NOTAS:

WARNING
Serious or fatal electrical shock may result from failure to connect the ground terminal to the motor, SubDrive/MonoDrive controller, metal plumbing, or other metal near the motor or cable, using wire no smaller than motor cable wires. To minimize risk of electrical shock, disconnect power before working on or around the SubDrive/MonoDrive system. CAPACITORS INSIDE THE SUBDRIVE/ MONODRIVE CONTROLLER CAN STILL HOLD LETHAL VOLTAGE EVEN AFTER POWER HAS BEEN DISCONNECTED.

ALLOW 5 MINUTES FOR DANGEROUS INTERNAL VOLTAGE TO DISCHARGE BEFORE REMOVING SUBDRIVE/MONODRIVE COVER.

Do not use motor in swimming areas.

ATTENTION
This equipment should be installed by technically qualified personnel. Failure to install it in compliance with national and local electrical codes and within Franklin Electric recommendations may result in electrical shock or fire hazard, unsatisfactory performance, or equipment failure. Installation information is available through pump manufacturers and distributors, or directly from Franklin Electric at our toll-free number 1-800-348-2420.

CAUTION
Use SubDrive/MonoDrive only with Franklin Electric 4-inch submersible motors as specified in this manual (see Table 2, pg. 19). Use of this unit with any other Franklin Electric motor or with motors from other manufacturers may result in damage to both motor and electronics. In applications where water delivery is critical, a replacement pressure sensor and/or back-up system should be readily available if the drive fails to operate as intended.
Table of Contents

Before Getting Started ... 2
Declaration of Conformity .. 4
Specifications - MonoDrive/MonoDriveXT 5
Specifications - SubDrive15 .. 6
Specifications - SubDrive20 .. 7
Specifications - SubDrive30 .. 8
Description ... 9
Features and Benefits ... 9
In the Box ... 12
How it Works ... 12
Drive Display ... 13
Location of Drive .. 13
Special Considerations for Outdoor Use 14
Wire Routing ... 15
Grounding ... 17
Fuse/Circuit Breaker and Wire Sizing 18
Generator Sizing .. 19
Tank and Pipe Sizing ... 20
Pump Sizing and Performance ... 21
- SubDrive15 .. 21
- SubDrive20 .. 22
- SubDrive30 .. 23
- MonoDrive .. 24
- MonoDriveXT .. 24
Installation Procedure .. 25
Drive Mounting .. 25
Drive Wiring ... 27
Drive Configuration ... 30
- Basic Setup (DIP Switches) .. 30
- Drive Selection .. 30
- Motor/Pump Size .. 31
- Underload Sensitivity ... 31
- Steady Flow Selection ... 32
Advanced Setup (Wi-Fi/FE Connect Mobile App) 33
- Connecting to Wi-Fi .. 33
- Accessing the Drive .. 34
Accessories .. 35
Diagnostic Fault Codes .. 36
SubDrive Troubleshooting .. 38
Limited Warranty ... 40
Declaration of Conformity

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Model Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>587 020 5003</td>
<td>MonoDrive</td>
</tr>
<tr>
<td>587 020 5103</td>
<td>SubDrive15</td>
</tr>
<tr>
<td>587 020 5203</td>
<td>MonoDriveXT</td>
</tr>
<tr>
<td>587 020 5303</td>
<td>SubDrive20</td>
</tr>
<tr>
<td>587 020 5403</td>
<td>SubDrive30</td>
</tr>
</tbody>
</table>

NATIONAL SANITATION FOUNDATION INFORMATION
The enclosed stainless steel pressure sensor(s) have been evaluated by Underwriters Laboratories Inc. and found to comply with the low lead requirements described in NSF/ANSI 61 - Annex G.

UL File: MH18335

MOTOR OVERLOAD PROTECTION NOTE:
The drive electronics provide motor overload protection by preventing motor current from exceeding the maximum Service Factor Amps (SFA). Motor overtemperature sensing is not provided by the drive.

BRANCH CIRCUIT PROTECTION
Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes, or the equivalent. Drive shall be protected by inverse-time fuse or Circuit breaker only, rated 300 V, maximum 300% of the full-load motor output current rating as noted in the Fuse/Circuit Breaker and Wire Sizing section below.

Wi-Fi MODULE
The Wi-Fi module has been tested and found to comply with part 15 of FCC Rules. These limits are designed to provide reasonable protection against harmful interference. This equipment generates, uses, and can radiate radio frequency energy for limited periods (approx. 15 min.) and, if the drive is not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.
Specifications – MonoDrive/MonoDriveXT

<table>
<thead>
<tr>
<th>Model No.</th>
<th>MonoDrive</th>
<th>MonoDriveXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEMA 3R</td>
<td>587 020 5003</td>
<td>587 020 5203</td>
</tr>
</tbody>
</table>

Input from Power Source

<table>
<thead>
<tr>
<th></th>
<th>MonoDrive</th>
<th>MonoDriveXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>208/230 VAC</td>
<td>208/230 VAC</td>
</tr>
<tr>
<td>Phase In</td>
<td>Single-Phase</td>
<td>Single-Phase</td>
</tr>
<tr>
<td>Frequency</td>
<td>60/50 Hz</td>
<td>60/50 Hz</td>
</tr>
<tr>
<td>Current (max)</td>
<td>11 A</td>
<td>16 A</td>
</tr>
<tr>
<td>Power Factor</td>
<td>~0.95</td>
<td>~0.95</td>
</tr>
<tr>
<td>Power (idle)*</td>
<td>4 W</td>
<td>5 W</td>
</tr>
<tr>
<td>Power (max)</td>
<td>2.5 kW</td>
<td>4.2 kW</td>
</tr>
<tr>
<td>Wire Gauge Size(s)</td>
<td>Consult Federal, State, and Local codes for branch circuit installations</td>
<td>Consult Federal, State, and Local codes for branch circuit installations</td>
</tr>
</tbody>
</table>

Output to Motor

<table>
<thead>
<tr>
<th></th>
<th>MonoDrive</th>
<th>MonoDriveXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>230 VAC</td>
<td>230 VAC</td>
</tr>
<tr>
<td>Phase Out</td>
<td>Single-Phase, (3-Wire)</td>
<td>Single-Phase, (3-Wire)</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>30-63 Hz</td>
<td>30-63 Hz</td>
</tr>
<tr>
<td>Current (max)</td>
<td>10.4 A</td>
<td>13.2 A</td>
</tr>
<tr>
<td>Wire Gauge Size(s)</td>
<td>See pg. 18 for circuit breaker and wire sizing</td>
<td>See pg. 18 for circuit breaker and wire sizing</td>
</tr>
</tbody>
</table>

Pressure Setting

<table>
<thead>
<tr>
<th></th>
<th>MonoDrive</th>
<th>MonoDriveXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory Preset</td>
<td>50 psi (3.4 bar)</td>
<td>50 psi (3.4 bar)</td>
</tr>
<tr>
<td>Adjustment Range</td>
<td>25-80 psi (1.7 - 5.5 bar)</td>
<td>25-80 psi (1.7 - 5.5 bar)</td>
</tr>
</tbody>
</table>

Operating Conditions

(A)
- Temperature (at 230 VAC input): -13 °F to 122 °F (-25 °C to 50 °C)
- Relative Humidity: 20-95%, non-condensing

Controller Size

(B)
- NEMA 3R: 9-3/4" x 16-3/4" x 5-1/4" : 20 lbs (25 x 42.5 x 13 cm) : (9 kg)
- 9-3/4" x 19-3/4" x 5-1/4" : 26 lbs (25 x 50 x 13 cm) : (11.8 kg)

For Use With

<table>
<thead>
<tr>
<th></th>
<th>MonoDrive</th>
<th>MonoDriveXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump (60 Hz)</td>
<td>0.5 hp (0.37 kW) pump with 214505-series motor</td>
<td>1.0 hp (0.75 kW) pump with 214508-series motor</td>
</tr>
<tr>
<td></td>
<td>0.75 hp (0.55 kW) pump with 214507-series motor</td>
<td>1.5 hp (1.1 kW) pump with 224300-series motor</td>
</tr>
<tr>
<td></td>
<td>1.0 hp (0.75 kW) pump with 214508-series motor</td>
<td>2.0 hp (1.5 kW) pump with 224301-series motor</td>
</tr>
<tr>
<td>FE Motor</td>
<td>214505-series (0.5 hp, 0.37 kW) single-phase, 3-wire</td>
<td>214508-series (1.0 hp, 0.75 kW) single-phase, 3-wire</td>
</tr>
<tr>
<td></td>
<td>214507-series (0.75 hp, 0.55 kW) single-phase, 3-wire</td>
<td>224300-series (1.5 hp, 1.1 kW) single-phase, 3-wire</td>
</tr>
<tr>
<td></td>
<td>214508-series (1.0 hp, 0.75 kW) single-phase, 3-wire</td>
<td>224301-series (2.0 hp, 1.5 kW) single-phase, 3-wire</td>
</tr>
</tbody>
</table>

Notes:

(A) Operating temperature is specified at full output power when installed as described in Location of Drive on pg. 13-14.
(B) Refer to pg. 25-26 for detailed Drive Mounting.

* Idle power is defined as input power used by the drive when the drive is not running the motor, the drive fan is off, and no communication is active. Idle power is increased by 1 W if Wi-Fi is on.
SubDrive/MonoDrive

Specifications – SubDrive15

<table>
<thead>
<tr>
<th>Model No.</th>
<th>NEMA 3R (indoor/outdoor)</th>
<th>587 020 5103</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input from Power Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>208/230 VAC</td>
<td></td>
</tr>
<tr>
<td>Phase In</td>
<td>Single-Phase</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>60/50 Hz</td>
<td></td>
</tr>
<tr>
<td>Current (max)</td>
<td>12 A</td>
<td></td>
</tr>
<tr>
<td>Power Factor</td>
<td>~ 0.95</td>
<td></td>
</tr>
<tr>
<td>Power (idle)*</td>
<td>4 W</td>
<td></td>
</tr>
<tr>
<td>Power (max)</td>
<td>2.5 kW</td>
<td></td>
</tr>
<tr>
<td>Wire Gauge Size(s)</td>
<td>Consult Federal, State, and Local codes for branch circuit installations</td>
<td></td>
</tr>
<tr>
<td>Output to Motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>230 VAC</td>
<td></td>
</tr>
<tr>
<td>Phase Out</td>
<td>Single-Phase (3-Wire) OR Three-Phase</td>
<td></td>
</tr>
<tr>
<td>Frequency Range</td>
<td>30-77 Hz (3/4 hp, 0.55 kW) pump 30-72 Hz (1 hp, 0.75 kW) pump 30-60 Hz (1.5 hp, 1.1 kW) pump 30-63 Hz (Single-Phase Motors)</td>
<td></td>
</tr>
<tr>
<td>Current (max)</td>
<td>5.9 A / phase</td>
<td></td>
</tr>
<tr>
<td>Wire Gauge Size(s)</td>
<td>See pg. 18 for circuit breaker and wire sizing</td>
<td></td>
</tr>
<tr>
<td>Pressure Setting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factory Preset</td>
<td>50 psi (3.4 bar)</td>
<td></td>
</tr>
<tr>
<td>Adjustment Range</td>
<td>25-80 psi (1.7 and 5.5 bar)</td>
<td></td>
</tr>
<tr>
<td>Operating Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (at 230 VAC input)</td>
<td>-13 °F to 122 °F (-25 °C to 50 °C)</td>
<td></td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>20-95%, non-consdensing</td>
<td></td>
</tr>
<tr>
<td>Controller Size (approximate)</td>
<td>NEMA 3R</td>
<td></td>
</tr>
<tr>
<td>(9-3/4” x 19-3/4” x 5-1/4” : 26 lbs (25 x 50 x 13 cm) : (11.8 kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Use With</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump (60 Hz)</td>
<td>0.5 hp (0.37 kW) pump with 214505- series motor 0.75 hp (0.55 kW) pump with 214507- series motor 1.0 hp (0.75 kW) pump with 214508- series motor 0.75 hp (0.55 kW), 1.0 hp (0.75 kW), or 1.5 hp (1.1 kW) pump with 234514- series motor</td>
<td></td>
</tr>
<tr>
<td>FE Motor</td>
<td>214505- series (0.5 hp, 0.37 kW) single-phase, 3-wire 214507- series (0.75 hp, 0.55 kW) single-phase, 3-wire 214508- series (1.0 hp, 0.75 kW) single-phase, 3-wire 234514- series (1.5 hp, 1.1 kW) three-phase</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

(A) Operating temperature is specified at full output power when installed as described in Location of Drive on pg. 13-14.
(B) Refer to pg. 25-26 for detailed Drive Mounting.
(C) When a SubDrive15 is used with a single-phase 3-wire motor (see drive selection on pg. 30-31), the MonoDrive pump and motor specifications on page 5 apply.
Idle power is defined as input power used by the drive when the drive is not running the motor, the drive fan is off, and no communication is active. Idle power is increased by 1 W if Wi-Fi is on.
Specifications - SubDrive20

<table>
<thead>
<tr>
<th>Input from Power Source</th>
<th>SubDrive20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model No.</td>
<td>NEMA 3R (indoor/outdoor) 587 020 5303</td>
</tr>
<tr>
<td>Voltage</td>
<td>208/230 VAC</td>
</tr>
<tr>
<td>Phase In</td>
<td>Single-Phase</td>
</tr>
<tr>
<td>Frequency</td>
<td>60/50 Hz</td>
</tr>
<tr>
<td>Current (max)</td>
<td>19 A</td>
</tr>
<tr>
<td>Power Factor</td>
<td>~ 0.95</td>
</tr>
<tr>
<td>Power (idle)*</td>
<td>5 W</td>
</tr>
<tr>
<td>Power (max)</td>
<td>4.2 kW</td>
</tr>
<tr>
<td>Wire Gauge Size(s)</td>
<td>Consult Federal, State, and Local codes for branch circuit installations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output to Motor</th>
<th>SubDrive20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>230 VAC</td>
</tr>
<tr>
<td>Phase Out</td>
<td>Single-Phase (3-Wire) OR Three-Phase</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>30-78 Hz (1 hp, 0.75 kW) pump 30-72 Hz (1.5 hp, 1.1 kW) pump 30-60 Hz (2 hp, 1.5 kW) pump 30-63 Hz (Single-Phase Motors)</td>
</tr>
<tr>
<td>Current (max)</td>
<td>8.1 A / phase</td>
</tr>
<tr>
<td>Wire Gauge Size(s)</td>
<td>See pg. 18 for circuit breaker and wire sizing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure Setting</th>
<th>SubDrive20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory preset</td>
<td>50 psi (3.4 bar)</td>
</tr>
<tr>
<td>Adjustment Range</td>
<td>25-80 psi (1.7 - 5.5 bar)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating Conditions(A)</th>
<th>SubDrive20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (at 230 VAC input)</td>
<td>-13 °F to 122 °F (-25 °C to 50 °C)</td>
</tr>
<tr>
<td>Relative Humidity (NEMA 3R)</td>
<td>20-95%, non-condensing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controller Size(B) (approximate)</th>
<th>SubDrive20</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEMA 3R</td>
<td>9-3/4" x 19-3/4" x 5-1/4" : 26 lbs (25 x 50 x 13 cm) : (11.8 kg)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>For Use With(C)</th>
<th>SubDrive20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump (60 Hz)</td>
<td>1.0 hp (0.75 kW) pump with 214508-series motor 1.5 hp (1.1 kW) pump with 224300-series motor 2.0 hp (1.5 kW) pump with 224301-series motor 0.75 hp (0.55 kW), 1.0 hp (0.75 kW), or 1.5 hp (1.1 kW) pump with 234514-series motor 1.0 hp (0.75 kW), 1.5 hp (1.1 kW), or 2.0 hp (1.5 kW) pump with 234315-series motor</td>
</tr>
<tr>
<td>FE Motor</td>
<td>214508-series (1.0 hp, 0.75 kW) single-phase, 3-wire 224300-series (1.5 hp, 1.1 kW) single-phase, 3-wire 224301-series (2.0 hp, 1.5 kW) single-phase, 3-wire 234514-series (1.5 hp, 1.1 kW) three-phase 234315-series (2.0 hp, 1.5 kW) three-phase</td>
</tr>
</tbody>
</table>

Notes:

(A) Operating temperature is specified at full output power when installed as described in Location of Drive on pg. 13-14.

(B) Refer to pg. 25-26 for detailed Drive Mounting.

(C) When a SubDrive20 is used with a single-phase 3-wire motor (see drive selection on pg. 30-31), the MonoDrive pump and motor specifications on page 5 apply.

* Idle power is defined as input power used by the drive when the drive is not running the motor, the drive fan is off, and no communication is active. Idle power is increased by 1 W if Wi-Fi is on.
SubDrive/MonoDrive

Specifications - SubDrive30

<table>
<thead>
<tr>
<th>Model No.</th>
<th>SubDrive30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>208/230 VAC</td>
</tr>
<tr>
<td>Phase In</td>
<td>Single-Phase</td>
</tr>
<tr>
<td>Frequency</td>
<td>60/50 Hz</td>
</tr>
<tr>
<td>Current (max)</td>
<td>23 A</td>
</tr>
<tr>
<td>Power Factor</td>
<td>~ 0.95</td>
</tr>
<tr>
<td>Power (idle)*</td>
<td>5 W</td>
</tr>
<tr>
<td>Power (max)</td>
<td>4.2 kW</td>
</tr>
<tr>
<td>Wire Gauge Size(s)</td>
<td>Consult Federal, State, and Local codes for branch circuit installations</td>
</tr>
</tbody>
</table>

Input from Power Source

<table>
<thead>
<tr>
<th>Voltage</th>
<th>230 VAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase Out</td>
<td>Single-Phase (3-Wire) OR Three-Phase</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>30-75 Hz (1.5 hp, 1.1 kW) pump</td>
</tr>
<tr>
<td></td>
<td>30-70 Hz (2 hp, 1.5 kW) pump</td>
</tr>
<tr>
<td></td>
<td>30-60 Hz (3 hp, 2.2 kW) pump</td>
</tr>
<tr>
<td></td>
<td>30-85 Hz (Single-Phase Motors)</td>
</tr>
<tr>
<td>Current (max)</td>
<td>10.9 A / phase</td>
</tr>
<tr>
<td>Wire Gauge Size(s)</td>
<td>See pg. 18 for circuit breaker and wire sizing</td>
</tr>
</tbody>
</table>

Output to Motor

<table>
<thead>
<tr>
<th>Pressure Setting</th>
<th>Factory preset: 50 psi (3.4 bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adjustment Range: 25-80 psi (1.7 - 5.5 bar)</td>
</tr>
<tr>
<td>Operating Conditions</td>
<td>Temperature (at 230 VAC input): -13 °F to 122 °F (-25 °C to 50 °C)</td>
</tr>
<tr>
<td></td>
<td>Relative Humidity: 20-95%, non-condensing</td>
</tr>
</tbody>
</table>

Controller Size

<table>
<thead>
<tr>
<th>Controller Size (approximate)</th>
<th>NEMA 3R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9 3/4" x 19 3/4" x 5 1/4" : 26 lbs</td>
</tr>
<tr>
<td></td>
<td>(25 x 50 x 13 cm) : (11.8 kg)</td>
</tr>
</tbody>
</table>

For Use With

Pump (60 Hz)	1.0 hp (0.75 kW) pump with 214508-series motor
	1.5 hp (1.1 kW) pump with 224300-series motor
	2.0 hp (1.5 kW) pump with 224301-series motor
	0.75 hp (0.55 kW), 1.0 hp (0.75 kW), or 1.5 hp (1.1 kW) pump with 234514-series motor
	1.0 hp (0.75 kW), 1.5 hp (1.1 kW), or 2.0 hp (1.5 kW) pump with 234315-series motor
FE Motor Rating	1.5 hp (1.1 kW), 2.0 hp (1.5 kW), or 3.0 hp (2.2 kW) pump with 234316-series motor

Notes:

(A) Operating temperature is specified at full output power when installed as described in Location of Drive on pg. 13-14.

(B) Refer to pg. 25-26 for detailed Drive Mounting.

(C) When a SubDrive30 is used with a single-phase 3-wire motor (see drive selection on pg. 29-31), the MonoDrive pump and motor specifications on page 5 apply.

* Idle power is defined as input power used by the drive when the drive is not running the motor, the drive fan is off, and no communication is active. Idle power is increased by 1 W if Wi-Fi is on.
Description and Features

Description
The Franklin Electric SubDrive/MonoDrive is a variable frequency controller that uses advanced electronics to protect the motor and enhance the performance of standard pumps used in residential and light commercial water system applications. When used with Franklin Electric motors (see Table 2 on Page 19), the SubDrive/MonoDrive provides constant “city-like” water pressure by eliminating the effects of pressure cycling associated with conventional water well systems.

Features and Benefits

Constant Water Pressure
The Franklin Electric SubDrive/MonoDrive provides consistent pressure regulation using advanced electronics to drive a standard motor and pump according to the pressure demands indicated by a highly accurate, heavy-duty, long-life pressure sensor. By adjusting the motor/pump speed, the SubDrive/MonoDrive can deliver constant pressure dependably, even as water demand changes. For example, a small demand on the system, such as a bathroom faucet, results in the motor/pump running at a relatively low speed. As greater demands are placed on the system, such as opening additional faucets or using appliances, the speed increases accordingly to maintain the desired system pressure. Using the provided pressure sensor, system pressure can be set in the range of 25 – 80 psi (1.7 – 5.5 bar).

Reduced Tank Size
Conventional systems use larger tanks in order to store water, whereas SubDrive systems utilize a smaller tank in order to maintain constant pressure. See Table 3 on page 20 for pressure tank size requirements.

Reduced Pump Size
SubDrive/MonoDrive controllers fit the pump to the application by adjusting the speed of the pump and motor. In SubDrive applications a pump with a power rating of half the motor power rating can be used when properly sized. See pump sizing information on page 21.

Over Temperature Foldback
SubDrive/MonoDrive controllers are designed for full power operation in ambient temperatures up to 122 °F (50 °C) at nominal input voltage. In extreme thermal conditions, the controller will reduce output power in an attempt to avoid shutdown and potential damage while still trying to provide water. Full output power is restored when the internal controller temperature cools to a safe level.
Adjustable Underload Sensitivity

The SubDrive/MonoDrive controller is configured at the factory to ensure detection of Underload faults in a wide variety of pumping applications. In rare cases (as with certain pumps in shallow wells) this trip level may result in nuisance faults. If the pump is installed in a shallow well, activate the controller and observe system behavior. Once the controller begins to regulate pressure, check operation at several flow rates to make sure the default sensitivity does not induce nuisance Underload trips. See Basic Set-up section on page 30 for details regarding the Underload Potentiometer.

System Run Relay

The SubDrive/MonoDrive is fitted with a relay output that activates (normally-open contact will close) whenever the system is actively pumping. Both normally-open (NO) and normally-closed (NC) contacts are provided. The contacts are rated 5 A at 250 VAC/30 VDC for general purpose loads, or 2A at 250 VAC/30VDC for inductive loads (i.e. relay). It is not recommended to use this function relay to control critical systems (chemical dosing, etc.)

Motor Soft Start

Normally, when there is a demand for water, the SubDrive/MonoDrive will be operating to accurately maintain system pressure. Whenever the SubDrive/MonoDrive detects that water is being used, the controller always “ramps up” the motor speed while gradually increasing voltage, resulting in a cooler motor and lower start-up current compared to conventional water systems. In those cases where the demand for water is small, the system may cycle on and off at low speed. Due to the controller’s soft-start feature and the sensor’s robust design, this will not harm the motor or the pressure sensor.

Power Factor Correction

Active Power Factor Correction (PFC) minimizes input RMS current by allowing the drive to draw a cleaner, sinusoidal input current waveform. This allows for a reduction in input power cable size when compared to similar applications without power factor correction, because less average current is used by the drive for a given load when compared to non-PFC devices.

Wi-Fi and FE Connect Mobile App

Wi-Fi connectivity is included in the drive to enable a connection to be made between the drive and a single Wi-Fi capable device (smartphone, tablet, etc.). This connection can be used in order to adjust advanced settings, monitor drive characteristics, and view fault history when using the FE Connect mobile app. See the Advanced Set-up section on page 33 of this manual for more details regarding the capabilities of the Wi-Fi connection.

Adjustable Underload Off Time

The Underload Off Time determines how long the drive will wait before attempting to run following an Underload event. The default time is 5 minutes, but is user-adjustable through the Wi-Fi interface from 1 minute to 48 hours.
System Diagnostics Fault History

In addition to regulating pump pressure and accurately controlling motor operation, the SubDrive/MonoDrive continuously monitors system performance and can detect a variety of abnormal conditions. In many cases, the controller will compensate as needed to maintain continuous system operation; however, if there is a high risk of equipment damage, the controller will protect the system and display the fault condition. If possible, the controller will try to restart itself when the fault condition subsides. Each time a fault is detected in the system, the drive records the fault and the elapsed run-time when the fault was detected. A maximum of 500 events are recorded and can be viewed using the Wi-Fi connection.

Ground Fault Detection

The drive is equipped with Ground Fault Protection for the motor output. In the event that a current leak to ground is detected on the motor output, the drive will indicate a Ground Fault (Fault Code F16). See the Diagnostic Fault Codes table at the end of the instruction manual for more information.

Adjustable Bump Modes

Using the Advanced Setup (Wi-Fi and FE Connect App), the bump mode and tank size settings of the drive can be changed. Bump mode controls how hard the drive will pump for the very short time period just before attempting to shut down. The drive ships with default settings that are compatible with the majority of SubDrive applications. For applications with large pressure tanks or trouble shutting down, the bump mode can be modified to be more aggressive. The system behavior should be monitored when adjusting these settings to ensure proper operation.

Replaceable Parts

Cooling Fan

In the event that the cooling fan fails and results in an occurrence of frequent Overheated Drive faults (Fault Code F7), the fan is able to be replaced. See Accessories section for information regarding NEMA 3R Fan Replacement kits.

Pressure Input Board

In the event that a lightning strike creates a surge on the pressure sensor input to the drive, the Pressure Input Board can become damaged causing the drive to not operate. Rather than replacing the entire drive, the Pressure Input Board can be replaced in an attempt to repair the drive. See the Accessories section for information regarding the Pressure Sensor Input Board Replacement kit.
SubDrive/MonoDrive

In the Box
A. Controller Unit
B. Pressure Sensor and Boot
C. Sensor Adjustment Tool
D. Sensor Cable
E. Installation Guide
F. Strain Relief Fitting

How it Works
The Franklin Electric SubDrive/MonoDrive is designed to be part of a system that consists of only four (4) components:

A. Standard Pump and Franklin Electric Motor
B. SubDrive/MonoDrive Controller
C. Small Pressure Tank (see Table 3, page 20)
D. Franklin Electric Pressure Sensor (NSF 61 approved)
Drive Display

System Idle
When the SubDrive/MonoDrive unit is powered on and idle (not pumping water), the display will be illuminated and “- - -” will be shown.

Drive Running
When the SubDrive/MonoDrive unit is controlling the motor and pump, the display will be illuminated and the frequency of the motor/pump (in Hertz, or cycles per second) will be shown on the display.

Fault Detected
When a fault condition is detected in the system, the drive display will illuminate red and the fault code will be displayed. All fault codes begin with “F” and followed by a one- or two-digit number. Consult the Diagnostic Fault Codes table in the back of this manual for more information.

Location of Drive
The SubDrive/MonoDrive controller is intended for operation in ambient temperatures from -13 °F to 122 °F (-25 °C to 50 °C) at 230 VAC input. The following recommendations will help in selection of the proper location of the controller.

- A tank tee is recommended for mounting the tank, pressure sensor, pressure gauge, and pressure relief valve at one junction. If a tank tee is not used, the pressure sensor should be located within 6 feet (1.8 meters) of the pressure tank to minimize pressure fluctuations. There should be no elbows between the tank and pressure sensor.
- The unit should be mounted on a sturdy supporting structure such as a wall or supporting post. Please take into account the weight of the unit.
- The electronics inside the SubDrive/MonoDrive are air-cooled. As a result, there should be at least 6 inches (15.24 cm) of clearance on each side and below the unit to allow room for air flow.
- The mounting location should have access to 230 VAC electrical supply and to the submersible motor wiring. To avoid possible interference with other appliances, please refer to the Wire Routing section of this manual and observe all precautions regarding power cable routing.
Special Considerations for Outdoor Use

The controller is suitable for outdoor use with a NEMA 3R rating; however, the following considerations should be made when installing the controller outdoors:

- The unit MUST be mounted vertically with the wiring end oriented downward, and the cover must be properly secured (also applies to indoor installations).
- The controller shall be mounted on a surface or back plate no smaller than the outer dimensions of the controller enclosure.
- NEMA 3R enclosures are capable of withstanding downward-directed rain only. The controller should be protected from hose-directed or sprayed water as well as blowing rain. Failure to do so may result in controller failure.
- The controller should NOT be placed in direct sunlight or other locations subject to extreme temperatures or humidity.
• If the drive is installed in areas where debris and small animals or insects are likely to enter the drive, an additional Air Screen Kit should be installed. See Accessories page for ordering information.

Wire Routing

To ensure the best protection from interference with other devices, please observe the following precautions:

- Separate input power and motor wiring by at least 8" (20.3 cm)

DO NOT run input power and motor wires together.
Separate by at least 8" (20.3 cm)

Output lead to motor to exit house as soon as possible.

When possible **DO NOT** run drive input power or motor wires in parallel with house wiring.
Avoid running out-building wires in parallel with motor wires.
If it is necessary to run wiring in parallel, keep drive input power and motor wires at least 8" (20.3 cm) from other house wiring.
Grounding

To ensure safety and performance, please observe the following grounding requirements:

- Ensure that a proper utility ground rod is present & connected.
- A dedicated output ground wire from the drive must be connected to the motor (motor wires and ground wires must be bundled together).
- An input power ground wire from the supply panel must be connected to the drive.
- Avoid multiple ground paths.
Fuse/Circuit Breaker and Wire Sizing

The Listed fuse/Listed circuit breaker size and maximum allowable wire lengths for connection to the SubDrive/MonoDrive are given in the following tables:

Table 1: Circuit Breaker Sizing and Maximum Input Cable Lengths (in Feet)
Based on a 3% voltage drop

<table>
<thead>
<tr>
<th>Model Family</th>
<th>Listed Fuse / Listed Circuit Breaker Amps</th>
<th>Nominal Input Voltage</th>
<th>AWG Copper Wire Sizes, 167 °F (75 °C) Insulation Unless Otherwise Noted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>MonoDrive</td>
<td>15</td>
<td>208</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>230</td>
<td>95</td>
</tr>
<tr>
<td>SubDrive15</td>
<td>15</td>
<td>208</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>230</td>
<td>85</td>
</tr>
<tr>
<td>MonoDriveXT</td>
<td>20</td>
<td>208</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>230</td>
<td>-</td>
</tr>
<tr>
<td>SubDrive20</td>
<td>20</td>
<td>208</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>230</td>
<td>-</td>
</tr>
<tr>
<td>SubDrive30</td>
<td>25</td>
<td>208</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>230</td>
<td>-</td>
</tr>
</tbody>
</table>

Highlighted Numbers denote wire with 194 °F (90 °C) insulation only

Use the service entrance panel ground ONLY.

DO NOT run ground wire separate.
Motor ground wire MUST be bundled with motor wires.
Table 2: Maximum Motor Cable Length (in feet)

<table>
<thead>
<tr>
<th>Controller Model</th>
<th>Franklin Electric Motor Model</th>
<th>HP</th>
<th>AWG Copper Wire Sizes, 167 °F (75 °C) Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>SubDrive15</td>
<td>234 514 xxxxx</td>
<td>1.5 (1 kW)</td>
<td>420</td>
</tr>
<tr>
<td>SubDrive20</td>
<td>234 315 xxxxx</td>
<td>2.0 (1.5 kW)</td>
<td>320</td>
</tr>
<tr>
<td>SubDrive30</td>
<td>234 316 xxxxx</td>
<td>3.0 (2.2 kW)</td>
<td>240</td>
</tr>
<tr>
<td>MonoDrive</td>
<td>214 505 xxxxx</td>
<td>0.5 (0.37 kW)</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>214 507 xxxxx</td>
<td>0.75 (0.55 kW)</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>214 508 xxxxx</td>
<td>1.0 (0.75 kW)</td>
<td>250</td>
</tr>
<tr>
<td>MonoDriveXT</td>
<td>214 508 xxxxx</td>
<td>1.0 (0.75 kW)</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>224 300 xxxxx</td>
<td>1.5 (1.1 kW)</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>224 301 xxxxx</td>
<td>2.0 (1.5 kW)</td>
<td>190</td>
</tr>
</tbody>
</table>

NOTE: 1 ft = 0.305 m

A 10-foot (3.05 m) section of cable is provided with the SubDrive/MonoDrive to connect the pressure sensor.

NOTE:
- Maximum allowable wire lengths are measured between the controller and motor.
- Aluminum wires should not be used with the SubDrive/MonoDrive.
- All wiring to comply with the National Electrical Code and local codes.
- MonoDrive minimum breaker amps may be lower than AIM Manual specifications for the motors listed due to the soft-starting characteristic of the MonoDrive controller.
- SubDrive minimum breaker amps may appear to exceed AIM Manual specifications for the motors listed because SubDrive controllers are supplied from a single-phase service rather than three-phase.
- Motor Overload Protection Note: The drive electronics provide motor overload protection by preventing motor current from exceeding the maximum Service Factor Amps (SFA). Motor overtemperature sensing is not provided by the drive.

Generator Sizing

Basic generator sizing for the Franklin Electric SubDrive/MonoDrive system is 1.5 times maximum input watts consumed by the drive, rounded up to the next normal-sized generator.

Recommended minimum generator sizes:

MonoDrive

- 1/2 hp = 2000 Watts (2 kW)
- 3/4 hp = 3000 Watts (3 kW)
- 1 hp = 3500 Watts (3.5 kW)

MonoDriveXT

- 1.5 hp = 4000 Watts (4 kW)
- 2 hp = 5000 Watts (5 kW)

SubDrive15 = 3500 Watts (3.5 kW)

SubDrive20 = 5700 Watts (6 kW)

SubDrive30 = 7000 Watts (7 kW)

Note: Not to be used on a Ground Fault Circuit Interrupter (GFCI). If using an externally regulated generator, verify that the voltage, Hertz and idle speed are appropriate to supply the drive.
Tank and Pipe Sizing

The SubDrive/MonoDrive needs only a small pressure tank to maintain constant pressure. (See table below for recommended tank size.) For pumps rated 12 gpm (45.4 lpm) or more, a slightly larger tank is recommended for optimum pressure regulation. The SubDrive/MonoDrive can also use an existing tank with a much larger capacity.

<table>
<thead>
<tr>
<th>Pump Flow Rating</th>
<th>Controller Model</th>
<th>Minimum Tank Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 12 gpm (45.4 lpm)</td>
<td>SubDrive15 or MonoDrive</td>
<td>2 gallons (7.6 liters)</td>
</tr>
<tr>
<td></td>
<td>SubDrive20</td>
<td>4 gallons (15.1 liters)</td>
</tr>
<tr>
<td></td>
<td>SubDrive30 or MonoDriveXT</td>
<td>4 gallons (15.1 liters)</td>
</tr>
<tr>
<td>12 gpm (45.4 lpm) and higher</td>
<td>SubDrive15 or MonoDrive</td>
<td>4 gallons (15.1 liters)</td>
</tr>
<tr>
<td></td>
<td>SubDrive20</td>
<td>8 gallons (30.3 liters)</td>
</tr>
<tr>
<td></td>
<td>SubDrive30 or MonoDriveXT</td>
<td>8 gallons (30.3 liters)</td>
</tr>
</tbody>
</table>

The pressure tank pre-charge setting should be 70% of the system pressure sensor setting as indicated in Table 4. The minimum supply pipe diameter should be selected not to exceed a maximum velocity of 8 ft/sec (2.4 m/s). (See Table 5 below for minimum pipe diameter.)

Table 3: Minimum Pressure Tank Size (Total Capacity)

<table>
<thead>
<tr>
<th>Pressure Sensor Set Point (PSI)</th>
<th>Pressure Tank Pre-charge (± 2 PSI)</th>
<th>Minimum Tank Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>18</td>
<td>2 gallons (7.6 liters)</td>
</tr>
<tr>
<td>30</td>
<td>21</td>
<td>4 gallons (15.1 liters)</td>
</tr>
<tr>
<td>35</td>
<td>25</td>
<td>4 gallons (15.1 liters)</td>
</tr>
<tr>
<td>40</td>
<td>28</td>
<td>4 gallons (15.1 liters)</td>
</tr>
<tr>
<td>45</td>
<td>32</td>
<td>8 gallons (30.3 liters)</td>
</tr>
<tr>
<td>50 [Factory set]</td>
<td>35</td>
<td>8 gallons (30.3 liters)</td>
</tr>
<tr>
<td>55</td>
<td>39</td>
<td>8 gallons (30.3 liters)</td>
</tr>
<tr>
<td>60</td>
<td>42</td>
<td>8 gallons (30.3 liters)</td>
</tr>
<tr>
<td>65</td>
<td>46</td>
<td>8 gallons (30.3 liters)</td>
</tr>
<tr>
<td>70</td>
<td>49</td>
<td>8 gallons (30.3 liters)</td>
</tr>
<tr>
<td>75</td>
<td>53</td>
<td>8 gallons (30.3 liters)</td>
</tr>
<tr>
<td>80</td>
<td>56</td>
<td>8 gallons (30.3 liters)</td>
</tr>
</tbody>
</table>

Table 4: Pressure Setting Guide

<table>
<thead>
<tr>
<th>Pressure Sensor Set Point (PSI)</th>
<th>Pressure Tank Pre-charge (± 2 PSI)</th>
<th>Minimum Tank Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>18</td>
<td>2 gallons (7.6 liters)</td>
</tr>
<tr>
<td>30</td>
<td>21</td>
<td>4 gallons (15.1 liters)</td>
</tr>
<tr>
<td>35</td>
<td>25</td>
<td>4 gallons (15.1 liters)</td>
</tr>
<tr>
<td>40</td>
<td>28</td>
<td>4 gallons (15.1 liters)</td>
</tr>
<tr>
<td>45</td>
<td>32</td>
<td>8 gallons (30.3 liters)</td>
</tr>
<tr>
<td>50 [Factory set]</td>
<td>35</td>
<td>8 gallons (30.3 liters)</td>
</tr>
<tr>
<td>55</td>
<td>39</td>
<td>8 gallons (30.3 liters)</td>
</tr>
<tr>
<td>60</td>
<td>42</td>
<td>8 gallons (30.3 liters)</td>
</tr>
<tr>
<td>65</td>
<td>46</td>
<td>8 gallons (30.3 liters)</td>
</tr>
<tr>
<td>70</td>
<td>49</td>
<td>8 gallons (30.3 liters)</td>
</tr>
<tr>
<td>75</td>
<td>53</td>
<td>8 gallons (30.3 liters)</td>
</tr>
<tr>
<td>80</td>
<td>56</td>
<td>8 gallons (30.3 liters)</td>
</tr>
</tbody>
</table>

Table 5: Maximum Velocity 8 ft/sec (2.4 m/s)

<table>
<thead>
<tr>
<th>Min Pipe Dia</th>
<th>Max GPM (lpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2"</td>
<td>4.0 (15.0)</td>
</tr>
<tr>
<td>3/4"</td>
<td>11.0 (41.6)</td>
</tr>
<tr>
<td>1"</td>
<td>19.6 (74.2)</td>
</tr>
<tr>
<td>1-1/4"</td>
<td>30.6 (115.8)</td>
</tr>
<tr>
<td>1-1/2"</td>
<td>44.1 (169.0)</td>
</tr>
<tr>
<td>2"</td>
<td>78.3 (296.4)</td>
</tr>
<tr>
<td>2-1/2"</td>
<td>176.3 (667.4)</td>
</tr>
</tbody>
</table>

WARNING

The pressure sensor supplied with this controller must be set between 25 and 80 psi (1.7 and 5.5 bar) only.
Pump Sizing and Performance

SubDrive15

The SubDrive15 is capable of use with 3/4 hp (0.55 kW) pumps that are mounted to 1.5 hp (1.1 kW) Franklin Electric three-phase motors. In general, the SubDrive15 will enhance the performance of a 3/4 hp (0.55 kW) pump to a similar or better performance than a conventional 1.5 hp (1.1 kW) pump of the same flow rating (pump series).

To select the proper 3/4 hp (0.55 kW) pump, first choose a 1.5 hp (1.1 kW) curve that meets the application's head and flow requirements. Use the 3/4 hp (0.55 kW) pump in the same pump series (flow rating). The SubDrive15 will adjust the speed of this pump to produce the performance of the 1.5 hp (1.1 kW) curve. An EXAMPLE of this is illustrated in the graph at right. Please consult the pump manufacturer's pump curve for your specific application.

The SubDrive15 can also be set up to run a 1.0 hp (0.75 kW) or 1.5 hp (1.1 kW) pump if desired, but larger pumps will still produce to the 1.5 hp (1.1 kW) curve and may only be operated with a 1.5 hp (1.1 kW) motor. To operate a different pump size, a DIP switch must be positioned to select the correct pump rating. Otherwise, the SubDrive15 may trigger erroneous faults.

See the Basic Set-up section of this manual for DIP switch information and settings.

WARNING

Serious or fatal electrical shock may result from contact with internal electrical components. DO NOT, under any circumstances, attempt to modify DIP switch settings until power has been removed and 5 minutes have passed for internal voltages to discharge! Power must be removed for DIP switch setting to take effect.
SubDrive20
The SubDrive20 is capable of use with 1.0 hp (0.75 kW) pumps that are mounted to 2.0 hp (1.5 kW) Franklin Electric three-phase motors. In general, the SubDrive20 will enhance the performance of a 1.0 hp (0.75 kW) pump to a similar or better performance than a conventional 2.0 hp (1.5 kW) pump of the same flow rating (pump series).

To select the proper 1.0 hp (0.75 kW) pump, first choose a 2.0 hp (1.5 kW) curve that meets the application's head and flow requirements. Use the 1.0 hp (0.75 kW) pump in the same pump series (flow rating). The SubDrive20 will adjust the speed of this pump to produce the performance of the 2.0 hp (1.5 kW) curve.

An EXAMPLE of this is illustrated in the graph at right. Please consult the pump manufacturer's pump curve for your specific application.

The SubDrive20 can also be set up to run a 1.5 hp (1.1 kW) or 2.0 hp (1.5 kW) pump if desired, but larger pumps will still produce to the 2.0 hp (1.5 kW) curve and may only be operated with a 2.0 hp (1.5 kW) motor. To operate a different pump size, a DIP switch must be positioned to select the correct pump rating. Otherwise, the SubDrive20 may trigger erroneous faults.

See the Basic Set-up section of this manual for DIP switch information and settings.

⚠️ WARNING ⚠️
Serious or fatal electrical shock may result from contact with internal electrical components. DO NOT, under any circumstances, attempt to modify DIP switch settings until power has been removed and 5 minutes have passed for internal voltages to discharge! Power must be removed for DIP switch setting to take effect.
SubDrive30

The SubDrive30 is capable of use with 1.5 hp (1.1 kW) pumps that are mounted to 3.0 hp (2.2 kW) Franklin Electric three-phase motors. In general, the SubDrive30 will enhance the performance of a 1.5 hp (1.1 kW) pump to a similar or better performance than a conventional 3.0 hp (2.2 kW) pump of the same flow rating (pump series).

To select the proper 1.5 hp (1.1 kW) pump, first choose a 3.0 hp (2.2 kW) curve that meets the application’s head and flow requirements. Use the 1.5 hp (1.1 kW) pump in the same pump series (flow rating). The SubDrive30 will adjust the speed of this pump to produce the performance of the 3.0 hp (2.2 kW) curve. An EXAMPLE of this is illustrated in the graph at right. Please consult the pump manufacturer’s pump curve for your specific application.

The SubDrive30 can also be set up to run a 2.0 hp (1.5 kW) or 3.0 hp (2.2 kW) pump if desired, but larger pumps will still produce to the 3.0 hp (2.2 kW) curve and may only be operated with a 3.0 hp (2.2 kW) motor. To operate a different pump size, a DIP switch must be positioned to select the correct pump rating. Otherwise, the SubDrive30 may trigger erroneous faults.

WARNING

Serious or fatal electrical shock may result from contact with internal electrical components. DO NOT, under any circumstances, attempt to modify DIP switch settings until power has been removed and 5 minutes have passed for internal voltages to discharge! Power must be removed for DIP switch setting to take effect.
MonoDrive
The MonoDrive is designed to convert a conventional 1/2 hp (0.37 kW), 3/4 hp (0.55 kW) or 1.0 hp (0.75 kW) pump system to a variable speed constant pressure system by simply replacing the 3-wire control box and pressure switch. Maximum pump output using the MonoDrive is similar to the performance achieved using a conventional control box. Therefore, the pump selection criteria are the same as if a control box were used. Please refer to the pump manufacturer’s literature for details of the pump selection procedure.

If a pump and motor, as described above, are already installed in the system and the well system components are in good working order, no further system upgrades are required. However, if the existing pump and motor have not been properly chosen, or if the components of the well system are not in good working order, the MonoDrive cannot be used to correct the problem or extend the life of aging components.

Failure to match the configuration to the rating of the pump and motor may trigger erroneous faults. See the Basic Set-up section of this manual for DIP switch information and settings.

MonoDriveXT
The MonoDriveXT is designed to convert a conventional 1.0 hp (0.75 kW), 1.5 hp (1.1 kW) or 2.0 hp (1.5 kW) pump system to a variable speed constant pressure system by simply replacing the 3-wire control box and pressure switch. Maximum pump output using the MonoDriveXT is similar to the performance achieved using a conventional control box. Therefore, the pump selection criteria are the same as if a control box were used. Please refer to the pump manufacturer’s literature for details of the pump selection procedure.

If a pump and motor, as described above, are already installed in the system and the well system components are in good working order, no further system upgrades are required. However, if the existing pump and motor have not been properly chosen, or if the components of the well system are not in good working order, the MonoDriveXT cannot be used to correct the problem or extend the life of aging components.

Failure to match the configuration to the rating of the pump and motor may trigger erroneous faults. See the Basic Set-up section of this manual for DIP switch information and settings.
Installation Procedure

Drive Mounting

The SubDrive/MonoDrive unit should be mounted on a surface or backplate no smaller than the outer controller dimensions in order to maintain the NEMA 3R rating. The controller must be mounted at least 18" (45.7 cm) off the ground.

The controller is mounted using the hanging tab on the top side of the enclosure, as well as two (2) additional mounting holes on the back side of the controller. All three (3) screw hole locations should be used to ensure the controller is securely mounted to the backplate or wall.
SubDrive/MonoDrive

<table>
<thead>
<tr>
<th>MODEL</th>
<th>“A”</th>
<th>“B”</th>
<th>“C”</th>
<th>“D”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SubDrive20, SubDrive30, MonoDriveXT</td>
<td>539.4 [21.24]</td>
<td>430.4 [16.94]</td>
<td>529.9 [20.86]</td>
<td>502.6 [19.79]</td>
</tr>
</tbody>
</table>
Drive Wiring

⚠️ **WARNING**
Serious or fatal electrical shock may result from failure to connect the motor, the SubDrive/MonoDrive, metal plumbing, and all other metal near the motor or cable to the power supply ground terminal using wire no smaller than motor cable wires. To reduce risk of electrical shock, disconnect power before working on or around the water system. Do not use motor in swimming areas.

1. Verify that the power has been shut off at the main breaker.

2. Verify that the dedicated branch circuit for the SubDrive/MonoDrive is equipped with a properly-sized circuit breaker. (See Table 1, pg. 18 for minimum breaker size.)

3. Use appropriate strain relief or conduit connectors. See below for conduit hole and knockout sizes.

4. Remove the SubDrive/MonoDrive lid.

5. Feed the motor leads through the opening on the bottom right side of the unit and connect them to the terminal block positions marked \(\ominus\) (Green Ground Wire), Red, Yellow and Black.
6. Feed the 230 VAC power leads through the larger opening on the bottom left side of the SubDrive/MonoDrive controller and connect them to the terminals marked L1, L2, and .

7. For pressure sensor leads, use the smaller opening on the bottom of the SubDrive/MonoDrive unit to the right of the input power leads. Connect the red and black leads to the terminals of the terminal block on the Pressure Input Board marked "Pressure Sensor" (interchangeable) with a small screwdriver (provided). Torque the fitting as shown in the figure to the right.

Note: The Pressure Input Board has two (2) terminals labeled “AUX IN” that can be used to provide an auxiliary control for the drive. This connection is in series with the pressure sensor input signal and is a non-powered connection. The device connected to this terminal must be a closed or shorted connection when it is desired that the drive pump water (if the system pressure is below the set point pressure of the pressure sensor). If the “AUX IN” is an open circuit, the drive will remain in idle mode regardless of system pressure.

To use the “AUX IN” connections the break-away tab on the lower-right corner of the Pressure Input Board must be removed. If the break-away tab is not removed, the “AUX IN” connections will always be short circuited. If the break-away tab is removed and the “AUX IN” terminals are not being used for an auxiliary device, the “AUX IN” connections must then be manually short circuited.

See figure to the right for location of this tab. The Pressure Input Board should be removed from the drive prior to prying off the break-away tab to prevent damage to the drive.
Note: A 10-foot (3 m) section of pressure sensor cable is provided with the controller, but it is possible to use similar 22 AWG wire for distances up to 100 feet (30 m) from the pressure sensor. A 100-foot (30 m) section of pressure sensor cable is available from your local Franklin Electric distributor. Low capacitance cable must be used if the pressure sensor is being connected with cable not supplied by Franklin Electric. Cable length longer than 100 feet (30 meters) should not be used as it can cause the drive to operate incorrectly. (See Accessories section on page 35 for details.)

8. Verify that the SubDrive/MonoDrive unit is properly configured for the horsepower rating of the motor and pump being used. (See the Pump Sizing section on page 26 for information on Drive Configuration.)

9. Replace the cover. Tighten screw to 10 in-lbs (1.1 Nm).

10. Connect the other end of the pressure sensor cable with the two spade terminals to the pressure sensor. The connections are interchangeable.

11. Set the pressure tank pre-charge at 70% of the desired water pressure setting. To check the tank's pre-charge, de-pressurize the water system by opening a tap with the drive off. (See Table 4 on page 20.) Measure the tank pre-charge with a pressure gauge at its inflation valve and make the necessary adjustments.

12. The pressure sensor communicates the system pressure to the SubDrive/MonoDrive controller. The sensor is preset at the factory to 50 psi (3.4 bar), but can be adjusted by the installer using the following procedure:
 a. Remove the rubber end-cap.
 b. Using a 7/32" Allen-wrench (provided), turn the adjusting screw clockwise to increase pressure and counter-clockwise to decrease pressure. The adjustment range is between 25 and 80 psi (1.7 and 5.5 bar). Note: 1/4 turn = approximately 3 psi (0.2 bar).
 c. Replace the rubber end cap.
 d. Cover the pressure sensor terminals with the rubber boot provided (Figure X). Do not place boot in direct sunlight.
NOTE: Ensure that the system is properly grounded all the way to the service entrance panel. Improper grounding may result in the loss of voltage surge protection and interference filtering.

Drive Configuration

WARNING

Serious or fatal electrical shock may result from contact with internal electrical components. **DO NOT**, under any circumstances, attempt to modify DIP switch settings until power has been removed and 5 minutes have passed for internal voltages to discharge! Power must be removed for DIP switch setting to take effect.

Basic Setup (DIP Switches)

For basic set-up, DIP SW1 Position 1 (FE Connect switch) must be in the "OFF" (down) position for DIP switch and Underload Potentiometer settings to be recognized.

Drive Selection

SubDrives have the ability to perform as MonoDrives when needed (SubDrive15 can be set as a MonoDrive. SubDrive20 and SubDrive30 can be set as a MonoDriveXT). If you wish to operate a single-phase motor with a SubDrive unit, ensure that DIP SW1 Position 2 is in the "ON" (up) position This is indicated by "MD" printed above DIP SW1 Position 2 on the black shield. If using a SubDrive with a three-phase motor, ensure DIP SW1 Position 2 is in the "OFF" (down) position, which is indicated by "SD" printed below DIP SW1 Position 2 on the black shield (this is the default setting for SubDrive units).

Note: When operating a SubDrive as a MonoDrive, the MonoDrive pump and motor specifications on Page 5 apply.
Motor / Pump Size

The SubDrive/MonoDrive can be configured to operate by setting only two (2) DIP switches; one (1) for the motor size and one (2) for the pump size. The DIP switches are located on the top of the User Interface board as shown in the figure below.

Note: When operating a SubDrive as a MonoDrive, the MonoDrive pump and motor specifications on page 5 apply.

Select the one (1) DIP switch from SW2 that corresponds to the motor hp being used and one (1) DIP switch from SW3 that corresponds to the pump hp being used. The corresponding hp values are printed above the SW2 and SW3 diagrams on the black shield. Selecting none or more than one switch in either SW2 or SW3 will result in an Invalid DIP Switch Fault indicated by F24 on the display.

Underload Sensitivity (if needed)

The Underload Sensitivity MUST be adjusted only when the SubDrive/MonoDrive is POWERED OFF. The new setting will not take effect until the drive is powered up.

The SubDrive/MonoDrive controller is configured at the factory to ensure detection of Underload faults in a wide variety of pumping applications. In rare cases (as with certain pumps in shallow wells) this trip level may result in nuisance faults. If the pump is installed in a shallow well, activate the controller and observe system behavior. Once the controller begins to regulate pressure, check operation at several flow rates to make sure the default sensitivity does not induce nuisance Underload trips.

If it becomes necessary to desensitize the Underload trip level, remove power and wait five minutes for the controller to discharge. Once the internal voltages have dissipated, locate the Underload Potentiometer on the upper-right corner of the User Interface Board as shown in the figure on the next page.
SubDrive/MonoDrive

Underload Sensitivity: Shallow Set
If the pump is installed in an extremely shallow (i.e. artesian) well and the system continues to trip, then the Underload Potentiometer (Pot) will need to be adjusted clockwise to a lower sensitivity setting. Check the Underload trip level and repeat as necessary.

Underload Sensitivity: Deep Set
In cases where the pump is set very deep, run the system at open discharge to pump the well down and observe carefully that an Underload is detected properly. If the system does not trip as it should, then the Underload Pot will need to be adjusted clockwise to a higher sensitivity setting.

Steady Flow Selection
The SubDrive/MonoDrive controller is configured at the factory to ensure quick response to maintain constant pressure. In rare cases (as with a water line tap before the pressure tank), the controller may need to be adjusted to offer better control.

If the controller is used on a system that has a water line tapped before the pressure tank and close to the well head or where audible speed variations of the PMA can be heard through the pipes, adjusting the pressure control response time may be necessary. After enabling this feature, the installer should check flow and pressure changes for possible overshoot. A larger pressure tank and/or wider margin between regulation and pressure relief valve pressure may be required as the Steady Flow Features reduce the controller's reaction time to sudden changes in flow.

If it is necessary to adjust the pressure control, remove power and allow the controller to discharge. Wait 5 minutes to allow internal voltage to dissipate, locate the DIP switch marked "SW1". Move DIP SW1 Position 4 to "ON" (up) position.
Advanced Setup (Wi-Fi / FE Connect Mobile App)

Some advanced features are able to be modified when connected to the SubDrive/MonoDrive through Wi-Fi and using the FE Connect mobile app. Follow the instructions below to connect to the drive and access these advanced settings and features.

Connecting to Wi-Fi

1. The drive’s Wi-Fi radio is only able to be connected to within fifteen (15) minutes following a power-up. If the drive has been powered on for longer than fifteen (15) minutes, cycle power to the SubDrive/MonoDrive unit.

2. After a few seconds of initialization following power-up, the FE Connect light will illuminate solid to indicate that a connection is available. The FE Connect light is located just below the clear window of the display.

3. Open the Wi-Fi connection settings on the device you wish to use to connect to the drive. This is similar to the method used to connect to a normal Wi-Fi hotspot. In the list of available Wi-Fi connections locate the hotspot named “FECNCT_XXXXX”, where “XXXXX” is the ending portion of the serial number of the drive being connected to.

4. Connect to the Wi-Fi hotspot. The FE Connect light on the drive will flash to indicate that a connection is being made. Only one (1) device can be connected to a drive at any given time.

Note: The Wi-Fi connection will stay active for an unlimited amount of time as long as the mobile device is not disconnected from the drive Wi-Fi. If the connection is broken, the drive Wi-Fi will be available for reconnection for one (1) hour following a disconnection. If you wish to reconnect to the drive Wi-Fi after an hour has elapsed, the drive must be power cycled.
Accessing the Drive
After making a successful connection to the drive, launch the FE Connect mobile app. The FE Connect mobile app can be downloaded from the Apple App Store or Google Play depending on the device being used.

Set-up
The Set-up screen allows for the set-up of additional features of the drive including:
- Drive Output*
- Motor Size*
- Pump Size*
- Underload Sensitivity*
- Underload Off Time
- Minimum Frequency
- Maximum Frequency
- Bump Mode
- Large Tank Mode
- Aggressive Bump
- Broken Pipe Detection
- Steady Flow*
- Units (hp or kW)

* In order to change and use settings from this page for the Drive Output, Motor Size, Pump Size, Underload Sensitivity and Steady Flow, the FE Connect DIP switch (SW1, Position 1) on the drive must be "ON". Otherwise, the drive will default to the Motor Size, Pump Size, and Underload Sensitivity settings made via the DIP switches and Underload Sensitivity rotary knob on the drive itself.

Monitoring
This screen allows for real-time monitoring of the system including:
- System Status
- Input Voltage
- Output Voltage
- Output Current
- Motor Speed
- System Information (Drive Model, Hardware Version, Software Version)

Logs
This screen allows the Fault History and Configuration Change History logs to be viewed and emailed. This page screen also displays the total Drive On Time and Motor Run Time.
Accessories

<table>
<thead>
<tr>
<th>Accessory</th>
<th>Detail</th>
<th>Used with</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Screen Kit</td>
<td>Assists in preventing insects from entering and damaging the internal components of the drive</td>
<td>All Models</td>
<td>226 550 901</td>
</tr>
<tr>
<td>Duplex Alternator</td>
<td>Allows a water system to alternate between two parallel pumps controlled by separate SubDrives</td>
<td>All Models</td>
<td>585 001 2000</td>
</tr>
<tr>
<td>Filter (Input)</td>
<td>Filter used on the input side of drive to help eliminate interference</td>
<td>All Models</td>
<td>225 198 901</td>
</tr>
<tr>
<td>Filter (Output)</td>
<td>Filter used on the output side of the drive to help eliminate interference</td>
<td>All Models (excluding SD300)</td>
<td>225 300 901</td>
</tr>
<tr>
<td>Filter (Surge Capacitors)</td>
<td>Capacitor used on the service panel to help eliminate power interference</td>
<td>SD15, SD20, SD30, MD, MDXT</td>
<td>225 199 901</td>
</tr>
<tr>
<td>NEMA 3R Fan Replacement Kit</td>
<td>Replacement fan</td>
<td>SD15 and MD</td>
<td>226 545 901</td>
</tr>
<tr>
<td>NEMA 3R Fan Replacement Kit</td>
<td>Replacement fan</td>
<td>SD20, SD30, MDXT</td>
<td>226 545 902</td>
</tr>
<tr>
<td>Pressure Sensor (High: 75-150 psi, NSF 61 rated)</td>
<td>Adjusts pressure in the water system from 75-150 psi (2-leaded cable)</td>
<td>All Models</td>
<td>225 970 901</td>
</tr>
<tr>
<td>Pressure Sensor (Standard Replacement: 25-80 psi, NSF 61 rated)</td>
<td>Adjusts pressure in the water system from 25-80 psi (2-leaded cable)</td>
<td>All Models</td>
<td>223 995 901</td>
</tr>
<tr>
<td>Sensor Cable Kit (indoor)</td>
<td>100 feet of 22 AWG cable (2-leaded cable)</td>
<td>SD15, SD20, SD30, MD, and MDXT</td>
<td>223 995 902</td>
</tr>
<tr>
<td>Sensor Direct Burial Cable</td>
<td>Designed to be run in a trench underground without the use of conduit to surround it (4-leaded cable)</td>
<td>All Models - 10 ft (3 m)</td>
<td>225 800 901</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All Models - 30 ft (9 m)</td>
<td>225 800 902</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All Models - 100 ft (30.5 m)</td>
<td>225 800 903</td>
</tr>
<tr>
<td>Tank Drawdown Kit</td>
<td>Allows the use of water stored in the tank during low flow demands</td>
<td>All Models</td>
<td>225 770 901</td>
</tr>
<tr>
<td>Pressure Sensor Input Board Replacement</td>
<td>Replacement board for drives that have experienced a surge on the pressure sensor input</td>
<td>All Models</td>
<td>226 540 901</td>
</tr>
</tbody>
</table>
DIAGNOSTIC FAULT CODES

<table>
<thead>
<tr>
<th>NUMBER OF FLASHES</th>
<th>FAULT</th>
<th>POSSIBLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>MOTOR UNDERLOAD</td>
<td>Overpumped well, Broken shaft or coupling, Blocked screen, worn pump, Air/gas locked pump, SubDrive not set properly for pump end, Underload Sensitivity setting incorrect</td>
<td>Frequency near maximum with load less than configured underload sensitivity (Potentiometer or Wi-Fi), System is drawing down to pump inlet (out of water), High static, light loading pump - reset Potentiometer for less sensitivity if not out of water, Check pump rotation (SubDrive only) reconnected if necessary for proper rotation, Air/gas locked pump - if possible, set deeper in well to reduce, Verify DIP switches are set properly, Check Underload Sensitivity Setting (Potentiometer or Wi-Fi setting, whichever is applicable)</td>
</tr>
<tr>
<td>F2</td>
<td>UNDERVOLTAGE</td>
<td>Low line voltage, Misconnected input leads, Loose connection at breaker or panel</td>
<td>Line voltage low, less than approximately 150 VAC (normal operating range = 190 to 260 VAC), Check incoming power connections and correct or tighten if necessary, Correct incoming voltage - check circuit breaker or fuses, contact power company</td>
</tr>
<tr>
<td>F3</td>
<td>OVERCURRENT / LOCKED PUMP</td>
<td>Motor and/or pump misalignment, Dragging motor and/or pump, Motor and/or pump locked, Abrasives in pump, Excess motor cable length</td>
<td>Amperage above SFL at 30 Hz, Remove and repair or replace as required, Reduce motor cable length. Adhere to Maximum Motor Cable Length table.</td>
</tr>
<tr>
<td>F4</td>
<td>INCORRECTLY WIRED</td>
<td>MonoDrive only, Wrong resistance values on main and start</td>
<td>Wrong resistance on DC test at start, Check wiring, check motor size and DIP switch setting, adjust or repair as needed</td>
</tr>
<tr>
<td>F5</td>
<td>OPEN PHASE</td>
<td>Loose connection, Defective motor or drop cable, Wrong motor</td>
<td>Open reading on DC test at start, Check drop cable and motor resistance, tighten output connections, repair or replace as necessary, use “dry” motor to check drive functions. If drive will not run and exhibits underload fault replace drive</td>
</tr>
<tr>
<td>F6</td>
<td>SHORT CIRCUIT</td>
<td>When fault is indicated immediately after power-up, short circuit due to loose connection, defective cable, splice or motor</td>
<td>Amperage exceeded 25 amps on DC test at start or SF amps during running, Incorrect output wiring, phase to phase short, phase to ground short in wiring or motor, If fault is present after resetting and removing motor leads, replace drive</td>
</tr>
<tr>
<td>F7</td>
<td>OVERHEATED DRIVE</td>
<td>High ambient temperature, Direct sunlight, Obstruction of airflow</td>
<td>Drive heat sink has exceeded max rated temperature, needs to drop below 194 °F (90 °C) to restart, Fan blocked or inoperable, ambient above 122 °F (50 °C), direct sunlight, air flow blocked, Replace fan or relocate drive as necessary, Remove debris from fan intake/exhaust, Remove and clean optional air screen kit (if installed)</td>
</tr>
<tr>
<td>F9</td>
<td>INTERNAL PCB FAULT</td>
<td>A fault was found internal to drive</td>
<td>Contact your Franklin Electric Service Personnel, Unit may require replacement. Contact your supplier.</td>
</tr>
<tr>
<td>F12</td>
<td>OVERVOLTAGE</td>
<td>High line voltage, Internal voltage too high</td>
<td>Line voltage high, Check incoming power connections and correct or tighten if necessary, If line voltage is stable and measured below 260 VAC and problem persists, contact your Franklin Electric Service Personnel</td>
</tr>
</tbody>
</table>

Power down, disconnect leads to the motor and power up the SubDrive:

- If the SubDrive does not give an “open phase” fault (F5), then there is a problem with the SubDrive.
- Connect the SubDrive to a dry motor. If the motor goes through DC test and gives “underload” fault (F1), the SubDrive is working properly.
<table>
<thead>
<tr>
<th>Fault Code</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>F14</td>
<td>Broke pipe</td>
<td>Check system for large leak or broken pipe. If the system contains a sprinkler system or is being used to fill a pool or cistern, disable the Broken Pipe Detection.</td>
</tr>
<tr>
<td>F15</td>
<td>Phase imbalance</td>
<td>Check resistance of motor cable and windings. Verify motor phase currents. Verify motor type is matched to drive settings.</td>
</tr>
<tr>
<td>F16</td>
<td>Ground fault</td>
<td>Check motor cable insulation resistance with megger (while not connected to drive). Replace motor cable if needed.</td>
</tr>
<tr>
<td>F17</td>
<td>Sensor fault</td>
<td>Check connection between Display/Wi-Fi Board and Main Control Board.</td>
</tr>
<tr>
<td>F18</td>
<td>Communication fault</td>
<td>Check cable connection between Display/Wi-Fi Board and Main Control Board. If problem persists, unit may require replacement. Contact your supplier.</td>
</tr>
<tr>
<td>F19</td>
<td>Display/Wi-Fi board expected fault</td>
<td>Check connection between Display/Wi-Fi Board and Main Control Board. If problem persists, unit may require replacement. Contact your supplier.</td>
</tr>
<tr>
<td>F20</td>
<td>Main board startup fault</td>
<td>Contact your Franklin Electric Service Personnel. If problem persists, unit may require replacement. Contact your supplier.</td>
</tr>
<tr>
<td>F21</td>
<td>Invalid DIP switch setting</td>
<td>Check DIP switch settings.</td>
</tr>
<tr>
<td>F22</td>
<td>PFC temperature sensor fault</td>
<td>Check temperature sensor is malfunctioning. If problem persists, unit may require replacement. Contact your supplier.</td>
</tr>
<tr>
<td>F23</td>
<td>Communication fault</td>
<td>Check cable connection between Display/Wi-Fi Board and Main Control Board. If problem persists, unit may require replacement. Contact your supplier.</td>
</tr>
</tbody>
</table>

Troubleshooting Quick Reference Guide

Diagnostic Fault Codes

1. Power down, disconnect leads to the motor and power up the SubDrive:
 - If the SubDrive does not give an "open phase" fault (F1), then there is a problem with the SubDrive.
 - If the SubDrive does not give an "open phase" fault (F1), then there is a problem with the SubDrive.

2. Connect the SubDrive to a dry motor. If the motor goes through DC test and gives "underload" fault (F1), the SubDrive is working properly.

Table of Faults

<table>
<thead>
<tr>
<th>Fault Code</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>F14</td>
<td>Broke pipe</td>
<td>Check system for large leak or broken pipe. If the system contains a sprinkler system or is being used to fill a pool or cistern, disable the Broken Pipe Detection.</td>
</tr>
<tr>
<td>F15</td>
<td>Phase imbalance</td>
<td>Check resistance of motor cable and windings. Verify motor phase currents. Verify motor type is matched to drive settings.</td>
</tr>
<tr>
<td>F16</td>
<td>Ground fault</td>
<td>Check motor cable insulation resistance with megger (while not connected to drive). Replace motor cable if needed.</td>
</tr>
<tr>
<td>F17</td>
<td>Sensor fault</td>
<td>Check connection between Display/Wi-Fi Board and Main Control Board.</td>
</tr>
<tr>
<td>F18</td>
<td>Communication fault</td>
<td>Check cable connection between Display/Wi-Fi Board and Main Control Board. If problem persists, unit may require replacement. Contact your supplier.</td>
</tr>
<tr>
<td>F19</td>
<td>Display/Wi-Fi board expected fault</td>
<td>Check connection between Display/Wi-Fi Board and Main Control Board. If problem persists, unit may require replacement. Contact your supplier.</td>
</tr>
<tr>
<td>F20</td>
<td>Main board startup fault</td>
<td>Contact your Franklin Electric Service Personnel. If problem persists, unit may require replacement. Contact your supplier.</td>
</tr>
<tr>
<td>F21</td>
<td>Invalid DIP switch setting</td>
<td>Check DIP switch settings.</td>
</tr>
<tr>
<td>F22</td>
<td>PFC temperature sensor fault</td>
<td>Check temperature sensor is malfunctioning. If problem persists, unit may require replacement. Contact your supplier.</td>
</tr>
<tr>
<td>F23</td>
<td>Communication fault</td>
<td>Check cable connection between Display/Wi-Fi Board and Main Control Board. If problem persists, unit may require replacement. Contact your supplier.</td>
</tr>
</tbody>
</table>

SUBDRIVE TROUBLESHOOTING

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>INDICATOR LIGHTS</th>
<th>POSSIBLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
</table>
| NO WATER | NONE | - No supply voltage present
- Display board cable disconnected or loose | - Verify cable connection between main control board and display board
- If correct voltage is present, replace drive |
| | GREEN *"---"* ON DISPLAY | - Pressure sensor circuit | - Verify water pressure is below system set point
- If Pressure Input Board break-away tab is removed, ensure auxiliary device is connected and closed circuit
- If Pressure Input Board break-away tab is removed and no auxiliary device is being used, manually short-circuit "AUX IN" connections
- Jumper wires together at pressure sensor; if pump starts, replace sensor
- If pump doesn't start, check sensor connection at Pressure Input Board; if loose, repair
- If pump doesn't start, jumper sensor connection at Pressure Input Board. If pump starts, replace wire
- If pump doesn't start with sensor Pressure Input Board connection jumpered, replace Pressure Input Board
- If pump doesn't start with new Pressure Input Board, replace drive |
| | RED | - Fault detected | - Proceed to fault code description and remedy |
| | GREEN MOTOR FREQUENCY ON DISPLAY | - Drive and motor are operating
- Loose switch or cable connection
- Incorrect motor or pump settings
- Motor may be running backwards
- Gulping water at pump inlet | - Verify Maximum Frequency setting. If this setting was reduced below maximum value, increase
- Verify motor/pump ratings and match to motor/pump settings on drive (DIP switch or Wi-Fi)
- Verify motor connections
- Frequency max, amps low, check for closed valve, or stuck check valve
- Frequency max, amps high, check for hole in pipe
- Frequency max, amps erratic, check pump operation, dragging impellers
- This is not a drive problem
- Check all connections
- Disconnect power and allow well to recover for short time, then retry |
| PRESSURE FLUCTUATIONS | GREEN MOTOR FREQUENCY ON DISPLAY | - Pressure sensor placement and setting
- Pressure gauge placement
- Pressure tank size and pre-charge
- Leak in system
- Air entrainment into pump intake (lack of submergence) | - Correct pressure and placement as necessary
- Tank may be too small for system flow
- This is not a drive problem
- Disconnect power and check pressure gauge for pressure drop
- Set deeper in the well or tank; install a flow sleeve with airtight seal around drop pipe and cable
- If fluctuation is only on branches before sensor, enable Steady Flow
- Change tank size configuration |
| RUNS BUT WON'T SHUT DOWN | GREEN MOTOR FREQUENCY ON DISPLAY | - Pressure sensor placement and setting
- Tank pre-charge pressure
- Impeller damage
- Leaky system
- Size improperly (pump can't build enough head) | - Check frequency at low flows, pressure setting may be too close to pump max head
- Verify precharge at 70% if tank size is larger than minimum, increase precharge (up to 85%)
- Verify that the system will build and hold pressure
- Enable bump and/or aggressive bump
- Increase minimum frequency |
<p>| RUNS BUT TRIPS | FLASHING RED | - Check fault code and see corrective action | - Proceed to fault code description and remedy on reverse side |</p>
<table>
<thead>
<tr>
<th>Condition</th>
<th>Indicator Lights</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW PRESSURE</td>
<td>GREEN</td>
<td>Motor Frequency on Display</td>
<td>- Pressure sensor setting</td>
</tr>
<tr>
<td>HIGH PRESSURE</td>
<td>GREEN</td>
<td>Motor Frequency on Display</td>
<td>- Fan, hydraulic, plumbing</td>
</tr>
<tr>
<td>NO DISPLAY</td>
<td>NONE</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CANNOT CONNECT TO DRIVE</td>
<td>Wi-Fi</td>
<td>connect light on Solid</td>
<td></td>
</tr>
<tr>
<td>RFI-EMI INTERFERENCE</td>
<td>GREEN</td>
<td>Motor Frequency on Display</td>
<td>- Poor grounding, wire routing, adjacent external power may be needed, see accessories section for ordering information</td>
</tr>
<tr>
<td>AUDIBLE NOISE</td>
<td>NONE</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Note: Additional external power may be needed. See accessories section for ordering information.
LIMITED WARRANTY*

THIS WARRANTY SETS FORTH THE COMPANY’S SOLE OBLIGATION AND PURCHASER’S EXCLUSIVE REMEDY FOR DEFECTIVE PRODUCT.

Franklin Electric Company, Inc. and its subsidiaries (hereafter “the Company”) warrants that the products accompanied by this warranty are free from defects in material or workmanship of the Company.

The Company has the right to inspect any product returned under warranty to confirm that the product contains a defect in material or workmanship. The Company shall have the sole right to choose whether to repair or replace defective equipment, parts, or components.

The buyer must return the product to an authorized Franklin Electric Distribution outlet for warranty consideration. Returns to the place of purchase will only be considered for warranty coverage if the place of purchase is an authorized Franklin Electric Distributor at the time the claim is made. Subject to the terms and conditions listed below, the Company will repair or replace to the buyer any portion of this product which proves defective due to materials or workmanship of the Company.

The Company will consider products for warranty for 12 months from the date of installation or for 24 months from the date of manufacture, whichever occurs first.

The Company shall IN NO EVENT be responsible or liable for the cost of field labor or other charges incurred by any customer in removing and/or affixing any product, part or component thereof.

The Company reserves the right to change or improve its products or any portions thereof without being obligated to provide such change or improvement to previously sold products.

THIS WARRANTY DOES NOT APPLY TO products damaged by acts of God, including lightning, normal wear and tear, normal maintenance services and the parts used in connection with such service, or any other conditions beyond the control of the Company.

THIS WARRANTY WILL IMMEDIATELY VOID if any of the following conditions are found:

1. Product is used for purposes other than those for which it was designed and manufactured;
2. Product was not installed in accordance with applicable codes, ordinances and good trade practices;
3. Product was not installed by a Franklin Certified Contractor; or
4. Product was damaged as a result of negligence, abuse, accident, misapplication, tampering, alteration, improper installation, operation, maintenance or storage, nor to an excess of recommended maximums as set forth in the product instructions.

NEITHER SELLER NOR THE COMPANY SHALL BE LIABLE FOR ANY INJURY, LOSS OR DAMAGE, DIRECT, INCIDENTAL OR CONSEQUENTIAL (INCLUDING, BUT NOT LIMITED TO, INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR LOST PROFITS, LOST SALES, INJURY TO PERSON OR PROPERTY, OR ANY OTHER INCIDENTAL OR CONSEQUENTIAL LOSS), ARISING OUT OF THE USE OR THE INABILITY TO USE THE PRODUCT, AND THE BUYER AGREES THAT NO OTHER REMEDY SHALL BE AVAILABLE TO IT.

THE WARRANTY AND REMEDY DESCRIBED IN THIS LIMITED WARRANTY IS AN EXCLUSIVE WARRANTY AND REMEDY AND IS IN LIEU OF ANY OTHER WARRANTY OR REMEDY, EXPRESS OR IMPLIED, WHICH OTHER WARRANTIES AND REMEDIES ARE HEREBY EXPRESSLY EXCLUDED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, TO THE EXTENT EITHER APPLIES TO A PRODUCT SHALL BE LIMITED IN DURATION TO THE PERIODS OF THE EXPRESSED WARRANTIES GIVEN ABOVE.

DISCLAIMER: Any oral statements about the product made by the seller, the Company, the representatives or any other parties, do not constitute warranties, shall not be relied upon by the buyer, and are not part of the contract for sale. Seller's and the Company's only obligation, and buyer's only remedy, shall be the replacement and/or repair by the Company of the product as described above. Before using, the user shall determine the suitability of the product for his intended use, and user assumes all risk and liability whatsoever in connection therewith.

Some states and countries do not allow the exclusion or limitations on how long an implied warranty lasts or the exclusion or limitation of incidental or consequential damages, so the above exclusion or limitations may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state and country to country.

Franklin Electric, in its sole discretion, may update this limited warranty from time to time. Any conflicting information relating to warranty procedures, whether in a user manual or otherwise, is hereby superseded by this document. Nonetheless, all references to the term, or length of a warranty term, will remain consistent with the warranty in place at the time of purchase.

*Contact Franklin Electric Co., Inc. Export Division for International Warranty.
SubDrive15/20/30
MonoDrive, MonoDriveXT
NEMA 3R

Manuel du propriétaire

Franklin Electric
Avant de commencer

⚠️ **AVERTISSEMENT**

Le fait de ne pas brancher la borne de mise à la terre au moteur, au contrôleur SubDrive/MonoDrive, à la plomberie en métal ou à un autre élément métallique à proximité du moteur ou du câble au moyen d’un fil dont le diamètre n’est pas inférieur à celui des fils du câble du moteur peut provoquer une décharge électrique grave ou mortelle. Pour réduire le risque de décharge électrique, débranchez l'alimentation avant de travailler sur le système SubDrive/MonoDrive ou à proximité de celui-ci. LES CONDENSATEURS SITUÉS DANS LE CONTRÔLEUR SUBDRIVE/MONODRIVE PEUVENT ENCORE CONTENIR UNE TENSION MORTELLE, MÊME APRÈS QUE L’ALIMENTATION AIT ÉTÉ COUPEE.

ATTENDEZ CINC MINUTES AVANT DE RETIRER LE COUVERCLE DU SUBDRIVE/MONODRIVE AFIN DE PERMETTRE AUX TENSIONS INTERNES DANGEREUSES DE SE DISSIPER.

N’utilisez pas le moteur dans les zones de baignade.

⚠️ **ATTENTION**

Cet équipement doit être installé par une personne qualifiée du point de vue technique. Une installation ne respectant pas les codes de l’électricité nationaux et locaux et les recommandations de Franklin Electric peut entraîner une décharge électrique, un incendie, un rendement insatisfaisant ou une défaillance de l’appareil. De l’information sur l’installation est disponible auprès des fabricants et des distributeurs de pompes, ou directement auprès de Franklin Electric au moyen de notre numéro sans frais, 1-800-348-2420.

⚠️ **PRUDENCE**

Utilisez le SubDrive/MonoDrive uniquement avec des moteurs submersibles Franklin Electric de 10 cm (4 po), tel que spécifié dans ce manuel (consultez le tableau 2 à la page 19). L’utilisation de cette unité avec un autre moteur Franklin Electric ou avec des moteurs d’autres fabricants pourrait entraîner des dommages, tant au moteur qu’aux composants électroniques. Dans les applications où la distribution d’eau est essentielle, un capteur de pression de remplacement ou un système de rechange doivent être facilement disponibles en cas de défaillance de l’entraînement.
Table des matières

- Avant de commencer ... 2
- Déclaration de conformité ... 4
- Spécifications : MonoDrive/MonoDriveXT 5
- Spécifications : SubDrive15 ... 6
- Spécifications : SubDrive20 ... 7
- Spécifications : SubDrive30 ... 8
- Description ... 9
- Caractéristiques et avantages .. 9
- Dans la boîte ... 12
- Comment cela fonctionne .. 12
- Écran de l’entraînement ... 13
- Emplacement de l’entraînement ... 13
- Considérations propres à l’utilisation extérieure 14
- Acheminement des fils ... 15
- Mise à la terre ... 17
- Tailles du fusible/disjoncteur et des fils 18
- Sélection du générateur ... 19
- Sélection du tuyau et du réservoir 20
- Taille et rendement de la pompe .. 21
 - SubDrive15 ... 21
 - SubDrive20 ... 22
 - SubDrive30 ... 23
 - MonoDrive .. 24
 - MonoDriveXT .. 24
- Procédure d’installation .. 25
- Fixation de l’entraînement ... 25
- Câblage de l’entraînement ... 27
- Configuration de l’entraînement ... 30
 - Configuration de base (commutateurs DIP) 30
- Sélection de l’entraînement .. 30
- Sélection de la pompe et du moteur 31
- Sensibilité de sous-charge (au besoin) 31
- Sélection de débit constant ... 32
- Configuration avancée (application mobile FE Connect / Wi-Fi) 33
- Se connecter au Wi-Fi .. 33
- Accéder à l’entraînement ... 34
- Accessoires .. 35
- Codes de défaillance de diagnostic 36
- Dépannage du SubDrive .. 38
- Garantie limitée .. 40
Déclaration de conformité

INFORMATION DE LA NATIONAL SANITATION FOUNDATION
Le ou les capteurs de pression en acier inoxydable ci-inclus ont été évalués par Underwriters Laboratories Inc. et jugés conformes aux exigences de faible teneur en plomb décrites dans le document NSF/ANSI 61, annexe G.

REMARQUE SUR LA PROTECTION CONTRE LA SURCHARGE DU MOTEUR :
Les composants électroniques de l’entraînement protègent le moteur contre la surcharge en empêchant le courant dans le moteur de dépasser l’intensité de facteur de charge (SFA) maximal. La détection d’une surchauffe du moteur n’est pas effectuée par l’entraînement.

PROTECTION DU CIRCUIT DE DÉRIVATION
Une protection intégrée et transistorisée contre les courts-circuits ne protège pas le circuit de dérivation. La protection de ce dernier doit être assurée conformément au Code national de l’électricité ainsi qu’aux codes locaux additionnels, ou l’équivalent. L’entraînement doit être protégé uniquement par un fusible ou disjoncteur de protection à temps inverse, avec une valeur nominale de 300 V, au maximum 300 % de l’intensité nominale de sortie du moteur à pleine charge, tel que noté dans la section Tailles du fusible/disjoncteur et des fils ci-dessous.

MODULE Wi-Fi
Le module Wi-Fi a été testé et jugé conforme aux règlements du FCC, partie 15. Ces limites sont conçues pour fournir une protection raisonnable contre les interférences nuisibles. Cet équipement produit, utilise et peut propager de l’énergie de fréquence radio pendant des périodes limitées (environ 15 min) et, si l’entraînement n’est pas installé et utilisé conformément à ces instructions, peut causer des interférences nuisibles aux communications radio. Cependant, il n’y a aucune garantie que ces interférences ne se produiront pas dans une installation particulière. Si cet équipement cause des interférences nuisibles à la réception de la radio ou de la télévision, ce qui peut être déterminé en éteignant puis en rallumant l’équipement, l’utilisateur est prié de tenter de corriger les interférences par l’une ou l’autre des mesures suivantes :

• Réorienter ou déplacer l’antenne de réception.
• Accroître la distance entre l’équipement et le récepteur.
• Connecter l’équipement dans une prise d’un circuit différent de celui utilisé par le récepteur.
• Consulter le vendeur ou un technicien radio/télévision expérimenté pour de l’assistance.
Spécifications : MonoDrive/MonoDriveXT

<table>
<thead>
<tr>
<th></th>
<th>MonoDrive</th>
<th>MonoDriveXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numéro de modèle</td>
<td>NEMA 3R (intérieur/extérieur) 587 020 5003</td>
<td>587 020 5203</td>
</tr>
<tr>
<td>Entrée de l'alimentation électrique</td>
<td>Tension (V) 208/230 V CA</td>
<td>208/230 V CA</td>
</tr>
<tr>
<td></td>
<td>Entrée de phase Monophasé</td>
<td>Monophasé</td>
</tr>
<tr>
<td></td>
<td>Fréquence 60/50 Hz</td>
<td>60/50 Hz</td>
</tr>
<tr>
<td></td>
<td>Intensité (max.) 11 A</td>
<td>16 A</td>
</tr>
<tr>
<td></td>
<td>Facteur de puissance ~ 0,95</td>
<td>~ 0,95</td>
</tr>
<tr>
<td></td>
<td>Puissance (en veille)* 4 W</td>
<td>5 W</td>
</tr>
<tr>
<td></td>
<td>Puissance (max.) 2,5 kW</td>
<td>4,2 kW</td>
</tr>
<tr>
<td></td>
<td>Taille(s) de calibre de fil</td>
<td>Consultez les codes nationaux, provinciaux et locaux pour les installations de circuit de dérivation.</td>
</tr>
<tr>
<td></td>
<td>Entrée de l'alimentation électrique</td>
<td>Consultez les codes nationaux, provinciaux et locaux pour les installations de circuit de dérivation.</td>
</tr>
<tr>
<td>Sortie vers le moteur</td>
<td>Tension (V) 230 V CA</td>
<td>230 V CA</td>
</tr>
<tr>
<td></td>
<td>Sortie de phase Monophasé (3 fils)</td>
<td>Monophasé (3 fils)</td>
</tr>
<tr>
<td></td>
<td>Plage de fréquences 30-63 Hz</td>
<td>30-63 Hz</td>
</tr>
<tr>
<td></td>
<td>Intensité (max.) 10,4 A</td>
<td>13,2 A</td>
</tr>
<tr>
<td></td>
<td>Taille(s) de calibre de fil</td>
<td>Consultez la page 18 pour les tailles des fusibles/dijoncteurs et des fils</td>
</tr>
<tr>
<td></td>
<td>Réglage de pression</td>
<td>Consultez la page 18 pour les tailles des fusibles/dijoncteurs et des fils</td>
</tr>
<tr>
<td>Conditions de fonctionnement</td>
<td>Préréglé à l'usine 50 psi (3,4 bar)</td>
<td>50 psi (3,4 bar)</td>
</tr>
<tr>
<td></td>
<td>Plage de réglage 25-80 psi (1,7 - 5,5 bar)</td>
<td>25-80 psi (1,7 - 5,5 bar)</td>
</tr>
<tr>
<td>Dimensions du contrôleur</td>
<td>Température (à l’entrée de 230 V CA) -25 °C à 50 °C (-13 °F à 122 °F)</td>
<td>-25 °C à 50 °C (-13 °F à 122 °F)</td>
</tr>
<tr>
<td></td>
<td>Humidité relative 20-95 %, sans condensation</td>
<td>20-95 %, sans condensation</td>
</tr>
<tr>
<td>Pour l’utilisation avec</td>
<td>NEMA 3R 25 x 42,5 x 13 cm : 9 kg (9-3/4 po x 16-3/4 po x 5-1/4 po) : (20 lb)</td>
<td>25 x 50 x 13 cm : 11,8 kg (9-3/4 po x 19-3/4 po x 5-1/4 po) : (26 lb)</td>
</tr>
<tr>
<td></td>
<td>Pompe (60 Hz) Pompe de 0,5 hp (0,37 kW) avec un moteur de la série 214505</td>
<td>Pompe de 1,0 hp (0,75 kW) avec un moteur de la série 214508</td>
</tr>
<tr>
<td></td>
<td>Pompe de 0,75 hp (0,55 kW) avec un moteur de la série 214507</td>
<td>Pompe de 1,5 hp (1,1 kW) avec un moteur de la série 224300</td>
</tr>
<tr>
<td></td>
<td>Pompe de 1,0 hp (0,75 kW) avec un moteur de la série 214508</td>
<td>Pompe de 2,0 hp (1,5 kW) avec un moteur de la série 224301</td>
</tr>
<tr>
<td></td>
<td>Moteur FE Monophasé (0,5 hp, 0,37 kW) de la série 214505, 3 fils Monophasé (0,75 hp, 0,55 kW) de la série 214507, 3 fils Monophasé (1,0 hp, 0,75 kW) de la série 214508, 3 fils</td>
<td>Monophasé (1,0 hp, 0,75 kW) de la série 214508, 3 fils Monophasé (1,5 hp, 1,1 kW) de la série 224300, 3 fils Monophasé (2,0 hp, 1,5 kW) de la série 224301, 3 fils</td>
</tr>
</tbody>
</table>

Remarques:

- (A) La température de fonctionnement est spécifiée pour une puissance de sortie maximale, lorsqu’installé tel que décrit dans la section Emplacement de l’entraînement, aux pages 13-14.
- (B) Consultez les pages 25-26 pour les détails sur la Fixation de l’entraînement.
- * La puissance en veille est définie comme la puissance d’entrée utilisée par l’entraînement lorsque celui-ci n’active pas le moteur, le ventilateur de l’entraînement est éteint et aucune communication n’est active. La puissance en veille s’accroît de 1 W si le Wi-Fi est activé.
Spécifications : SubDrive15

<table>
<thead>
<tr>
<th>Numéro de modèle</th>
<th>SubDrive15</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEMA 3R (intérieur/extérieur)</td>
<td>587 020 5103</td>
</tr>
</tbody>
</table>

Entrée de l'alimentation électrique

<table>
<thead>
<tr>
<th>Tension (V)</th>
<th>208/230 V CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrée de phase</td>
<td>Monophasé</td>
</tr>
<tr>
<td>Fréquence</td>
<td>60/50 Hz</td>
</tr>
<tr>
<td>Intensité (max.)</td>
<td>12 A</td>
</tr>
<tr>
<td>Facteur de puissance</td>
<td>~ 0,95</td>
</tr>
<tr>
<td>Puissance (en veille)*</td>
<td>4 W</td>
</tr>
<tr>
<td>Puissance (max.)</td>
<td>2,5 kW</td>
</tr>
<tr>
<td>Taille(s) de câble de fil</td>
<td>Consultez les codes nationaux, provinciaux et locaux pour les installations de circuit de dérivation.</td>
</tr>
</tbody>
</table>

Sortie vers le moteur

<table>
<thead>
<tr>
<th>Tension (V)</th>
<th>230 V CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sortie de phase</td>
<td>Monophasé (3 fils) OU Triphasé</td>
</tr>
<tr>
<td>Plage de fréquences</td>
<td>Pompe 30-77 Hz (3/4 hp, 0,55 kW) Pompe 30-72 Hz (1 hp, 0,75 kW) Pompe 30-60 Hz (1,5 hp, 1,1 kW) 30-63 Hz (moteurs monophasés)</td>
</tr>
<tr>
<td>Intensité (max.)</td>
<td>5,9 A / phase</td>
</tr>
<tr>
<td>Taille(s) de câble de fil</td>
<td>Consultez la page 18 pour les tailles des fusibles/disjoncteurs et des fils</td>
</tr>
</tbody>
</table>

Réglage de pression

| Prégréé à l’usine | 50 psi (3,4 bar) |
| Plage de réglage | 25-80 psi (1,7 - 5,5 bar) |

Conditions de fonctionnement(A)

| Température (à l’entrée de 230 V CA) | -25 °C à 50 °C (-13 °F à 122 °F) |
| Humidité relative | 20-95 %, sans condensation |

Dimensions du contrôleur(B) (approximatives)

| NEMA 3R | 25 x 50 x 13 cm : 11,8 kg (9 3/4 po x 19 3/4 po x 5 1/4 po) : (26 lb) |

Pour l’utilisation avec(C)

- Pompe (60 Hz)
 - Pompe de 0,5 hp (0,37 kW) avec un moteur de la série 214505
 - Pompe de 0,75 hp (0,55 kW) avec un moteur de la série 214507
 - Pompe de 1,0 hp (0,75 kW) avec un moteur de la série 214508
 - Pompe de 0,75 hp (0,55 kW), de 1,0 hp (0,75 kW) ou de 1,5 hp (1,1 kW) avec un moteur de la série 234514

- Moteur FE
 - Monophasé (0,5 hp, 0,37 kW) de la série 214505, 3 fils
 - Monophasé (0,75 hp, 0,55 kW) de la série 214507, 3 fils
 - Monophasé (1,0 hp, 0,75 kW) de la série 214508, 3 fils
 - Série 234514 (1,5 hp, 1,1 kW) triphasé

Remarques:

- (A) La température de fonctionnement est spécifiée pour une puissance de sortie maximale, lorsqu’installé tel que décrit dans la section Emplacement de l’entraînement, aux pages 13-14.
- (B) Consultez les pages 25-26 pour les détails sur la fixation de l’entraînement.
- (C) Lorsqu’un SubDrive15 est utilisé avec un moteur monophasé à 3 fils (consultez la sélection de l’entraînement aux pages 30-31), les spécifications de moteur et de pompe MonoDrive à la page 5 s’appliquent.

* La puissance en veille est définie comme la puissance d’entrée utilisée par l’entraînement lorsque celui-ci n’active pas le moteur, le ventilateur de l’entraînement est éteint et aucune communication n’est active. La puissance en veille s’accroît de 1 W si le Wi-Fi est activé.
Spécifications : SubDrive20

<table>
<thead>
<tr>
<th>Numéro de modèle</th>
<th>SubDrive20</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEMA 3R (intérieur/extérieur)</td>
<td>587 020 5303</td>
</tr>
</tbody>
</table>

Entrée de l'alimentation électrique

Tension (V)	208/230 V CA
Entrée de phase	Monophasé
Fréquence	60/50 Hz
Intensité (max.)	19 A
Facteur de puissance	~0,95
Puissance (en veille)*	5 W
Puissance (max.)	4,2 kW

Taille(s) de calibre de fil: Consultez les codes nationaux, provinciaux et locaux pour les installations de circuit de dérivation.

Sortie vers le moteur

| Tension (V) | 230 V CA |
| Sortie de phase | Monophasé (3 fils) OU Triphasé |

Plage de fréquences:
- Pompe 30-78 Hz (1 hp, 0,75 kW)
- Pompe 30-72 Hz (1,5 hp, 1,1 kW)
- Pompe 30-60 Hz (2 hp, 1,5 kW)
- 30-63 Hz (moteurs monophasés)

Intensité (max.) | 8,1 A / phase |

Taille(s) de calibre de fil: Consultez la page 18 pour les tailles des fusibles/disjoncteurs et des fils

Réglage de pression

- Préreglé à l’usine: 50 psi (3,4 bar)
- Plage de réglage: 25-80 psi (1,7 - 5,5 bar)

Conditions de fonctionnement

- Température (à l’entrée de 230 V CA): -25 °C à 50 °C (-13 °F à 122 °F)
- Humidité relative (NEMA 3R): 20-95 %, sans condensation

Dimensions du contrôleur (approximatives)

| NEMA 3R | 25 x 50 x 13 cm : 11,8 kg |
| (9 3/4 po x 19 3/4 po x 5 1/4 po) : (26 lb) |

Pour l’utilisation avec

- Pompe (60 Hz)
 - Pompe de 1,0 hp (0,75 kW) avec un moteur de la série 214508
 - Pompe de 1,5 hp (1,1 kW) avec un moteur de la série 224300
 - Pompe de 2,0 hp (1,5 kW) avec un moteur de la série 224301
 - Pompe de 0,75 hp (0,55 kW), de 1,0 hp (0,75 kW) ou de 1,5 hp (1,1 kW) avec un moteur de la série 234514
 - Pompe de 1,0 hp (0,75 kW), de 1,5 hp (1,1 kW) ou de 2,0 hp (1,5 kW) avec un moteur de la série 234315

- Moteur FE
 - Monophasé (1,0 hp, 0,75 kW) de la série 214508, 3 fils
 - Monophasé (1,5 hp, 1,1 kW) de la série 224300, 3 fils
 - Monophasé (2,0 hp, 1,5 kW) de la série 224301, 3 fils
 - Série 234514 (1,5 hp, 1,1 kW) triphasé
 - Série 234315 (2,0 hp, 1,5 kW) triphasé

Remarques:

A	La température de fonctionnement est spécifiée pour une puissance de sortie maximale, lorsqu’installé tel que décrit dans la section Emplacement de l’entraînement, aux pages 13-14.
B	Consultez les pages 25-26 pour les détails sur la Fixation de l’entraînement.
C	Lorsqu’un SubDrive20 est utilisé avec un moteur monophasé à 3 fils (consultez la sélection de l’entraînement aux pages 30-31), les spécifications de moteur et de pompe MonoDrive à la page 5 s’appliquent.
*	La puissance en veille est définie comme la puissance d’entrée utilisée par l’entraînement lorsque celui-ci n’active pas le moteur, le ventilateur de l’entraînement est éteint et aucune communication n’est active. La puissance en veille s’accroît de 1 W si le Wi-Fi est activé.
Spécifications : SubDrive30

<table>
<thead>
<tr>
<th>Spécification</th>
<th>SubDrive30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numéro de modèle</td>
<td>NEMA 3R (intérieur/extérieur) 587 020 5403</td>
</tr>
<tr>
<td>Entrée de l'alimentation électrique</td>
<td></td>
</tr>
<tr>
<td>Tension (V)</td>
<td>208/230 V CA</td>
</tr>
<tr>
<td>Entrée de phase</td>
<td>Monophasé</td>
</tr>
<tr>
<td>Fréquence</td>
<td>60/50 Hz</td>
</tr>
<tr>
<td>Intensité (max.)</td>
<td>23 A</td>
</tr>
<tr>
<td>Facteur de puissance</td>
<td>~ 0,95</td>
</tr>
<tr>
<td>Puissance (en veille)*</td>
<td>5 W</td>
</tr>
<tr>
<td>Puissance (max.)</td>
<td>4,2 kW</td>
</tr>
<tr>
<td>Taille(s) de calibre de fil</td>
<td>Consultez les codes nationaux, provinciaux et locaux pour les installations de circuit de dérivation.</td>
</tr>
<tr>
<td>Sortie vers le moteur</td>
<td></td>
</tr>
<tr>
<td>Tension (V)</td>
<td>230 V CA</td>
</tr>
<tr>
<td>Sortie de phase</td>
<td>Monophasé (3 fils) OU Triphasé</td>
</tr>
<tr>
<td>Plage de fréquences</td>
<td>Pompe 30-78 Hz (1,5 hp, 1,1 kW)</td>
</tr>
<tr>
<td></td>
<td>Pompe 30-70 Hz (2 hp, 1,5 kW)</td>
</tr>
<tr>
<td></td>
<td>Pompe 30-60 Hz (3 hp, 2,2 kW)</td>
</tr>
<tr>
<td></td>
<td>30-63 Hz (moteurs monophasés)</td>
</tr>
<tr>
<td>Intensité (max.)</td>
<td>10,9 A / phase</td>
</tr>
<tr>
<td>Taille(s) de calibre de fil</td>
<td>Consultez la page 18 pour les tailles des fusibles/disjoncteurs et des fils</td>
</tr>
<tr>
<td>Réglage de pression</td>
<td></td>
</tr>
<tr>
<td>Préréglé à l’usine</td>
<td>50 psi (3,4 bar)</td>
</tr>
<tr>
<td>Plage de réglage</td>
<td>25-80 psi (1,7 - 5,5 bar)</td>
</tr>
<tr>
<td>Conditions de fonctionnement</td>
<td></td>
</tr>
<tr>
<td>Température (à l’entrée de 230 V CA)</td>
<td>-25 °C à 50 °C (-13 °F à 122 °F)</td>
</tr>
<tr>
<td>Humidité relative</td>
<td>20-95 %, sans condensation</td>
</tr>
<tr>
<td>Dimensions du contrôleur</td>
<td>NEMA 3R 25 x 50 x 13 cm : 11,8 kg</td>
</tr>
<tr>
<td></td>
<td>(9 3/4 po x 19 3/4 po x 5 1/4 po) : (26 lb)</td>
</tr>
<tr>
<td>Pour l’utilisation avec</td>
<td>Pompe de 1,0 hp (0,75 kW) avec un moteur de la série 214508</td>
</tr>
<tr>
<td></td>
<td>Pompe de 1,5 hp (1,1 kW) avec un moteur de la série 224300</td>
</tr>
<tr>
<td></td>
<td>Pompe de 2,0 hp (1,5 kW) avec un moteur de la série 224301</td>
</tr>
<tr>
<td></td>
<td>Pompe de 0,75 hp (0,55 kW), de 1,0 hp (0,75 kW) ou de 1,5 hp (1,1 kW) avec un moteur de la série 234514</td>
</tr>
<tr>
<td></td>
<td>Pompe de 1,0 hp (0,75 kW), de 1,5 hp (1,1 kW) ou de 2,0 hp (1,5 kW) avec un moteur de la série 234315</td>
</tr>
<tr>
<td></td>
<td>Pompe de 1,5 hp (1,1 kW), de 2,0 hp (1,5 kW) ou de 3,0 hp (2,2 kW) avec un moteur de la série 234316</td>
</tr>
<tr>
<td>Valeurs nominales de moteur FE</td>
<td>Monophasé (1,0 hp, 0,75 kW) de la série 214508, 3 fils</td>
</tr>
<tr>
<td></td>
<td>Monophasé (1,5 hp, 1,1 kW) de la série 224300, 3 fils</td>
</tr>
<tr>
<td></td>
<td>Monophasé (2,0 hp, 1,5 kW) de la série 224301, 3 fils</td>
</tr>
<tr>
<td></td>
<td>Série 234514 (1,5 hp, 1,1 kW) triphasé</td>
</tr>
<tr>
<td></td>
<td>Série 234315 (2,0 hp, 1,5 kW) triphasé</td>
</tr>
<tr>
<td></td>
<td>Série 234316 (3,0 hp, 2,2 kW) triphasé</td>
</tr>
</tbody>
</table>

Remarques:

(A) La température de fonctionnement est spécifiée pour une puissance de sortie maximale, lorsqu'installé tel que décrit dans la section Emplacement de l'entraînement, aux pages 13-14.

(B) Consultez les pages 25-26 pour les détails sur la fixation de l'entraînement.

(C) Lorsqu’un SubDrive30 est utilisé avec un moteur monophasé à 3 fils (consultez la sélection de l’entraînement aux pages 30-31), les spécifications de moteur et de pomme MonoDrive à la page 5 s’appliquent.

* La puissance en veille est définie comme la puissance d'entrée utilisée par l'entraînement lorsque celui-ci n’active pas le moteur, le ventilateur de l'entraînement est éteint et aucune communication n’est active. La puissance en veille s’accroît de 1 W si le Wi-Fi est activé.
Description et caractéristiques

Description
L’unité SubDrive/MonoDrive de Franklin Electric est un contrôleur à fréquence variable qui utilise des composants électroniques avancés pour protéger le moteur et améliorer le rendement des pompes standards utilisées dans les applications de système d’eau résidentielles et commerciales légères. Lorsqu’utilisé avec des moteurs Franklin Electric (consultez le tableau 2, p. 19), le contrôleur SubDrive/MonoDrive fournit une pression d’eau constante de « qualité municipale » en éliminant les effets des cycles de pression associés aux systèmes de puits d’eau traditionnels.

Caractéristiques et avantages

Pression d’eau constante
L’unité SubDrive/MonoDrive de Franklin Electric fournit une régulation constante de la pression au moyen de composants électroniques avancés, afin d’entraîner un moteur et une pompe standards conformément aux demandes de pression indiquées par un capteur de pression durable, robuste et très précis. En réglant le régime du moteur ou de la pompe, le SubDrive/MonoDrive peut fournir de manière fiable une pression constante, même lorsque la demande en eau change. Par exemple, une petite demande du système, comme un robinet de salle de bain, fait en sorte que le moteur et la pompe tournent à un régime relativement faible. Au fur et à mesure que des demandes plus grandes sont appliquées au système, comme par l’ouverture de robinets additionnels ou l’utilisation d’appareils ménagers, le régime s’accroît de manière proportionnelle pour maintenir la pression du système désirée. Au moyen du capteur de pression fourni, la pression du système peut être réglée dans la plage 25 - 80 psi (1,7 - 5,5 bar).

Taille réduite du réservoir
Les systèmes traditionnels utilisent des réservoirs plus grands pour stocker de l’eau, alors que les systèmes SubDrive utilisent un réservoir plus petit afin de maintenir une pression constante. Consultez le tableau 3 à la page 20 pour les exigences en matière de taille de réservoir pressurisé.

Taille réduite de la pompe
Les contrôleurs SubDrive/MonoDrive font correspondre la pompe à l’application en réglant le régime de la pompe et du moteur. Dans les applications SubDrive, une pompe avec une puissance nominale de 50 % de celle du moteur peut être utilisée, lorsque sélectionnée de manière appropriée. Consultez l’information sur la sélection de pompe à la page 21.

Repli en cas d’excès de température
Les contrôleurs SubDrive/MonoDrive sont conçus pour un fonctionnement à pleine puissance à des températures ambiantes pouvant atteindre 50 °C (122 °F), à la tension d’entrée nominale. Dans des conditions thermiques extrêmes, le contrôleur réduit la puissance de sortie afin de tenter d’éviter un arrêt et des dommages potentiels, tout en continuant de fournir de l’eau. La pleine puissance de sortie est rétablie lorsque la température interne du contrôleur descend à un niveau sécuritaire.
SubDrive/MonoDrive

Sensibilité de sous-charge réglable
Le contrôleur SubDrive/MonoDrive est configuré à l'usine pour assurer la détection des défauts de sous-charge dans un large éventail d'applications de pompage. Dans de rares situations (comme certaines pompes dans des puits peu profonds), ce niveau de déclenchement peut provoquer des défauts injustifiés. Si la pompe est installée dans un puits peu profond, activez le contrôleur puis observez le comportement du système. Une fois que le contrôleur commence à réguler la pression, vérifiez le fonctionnement à différents débits pour vous assurer que la sensibilité par défaut ne provoque pas de déclenchements injustifiés de sous-charge. Consultez la section Configuration de base à la page 29 pour des détails concernant le potentiomètre de sous-charge.

Relais de fonctionnement du système
Le SubDrive/MonoDrive comporte une sortie de relais qui active (le contact normalement ouvert se ferme) lorsque le système pompe de manière active. Des contacts normalement ouverts (NO) et normalement fermés (NC) sont fournis. Les contacts acceptent 5 A à 250 V CA / 30 V CC pour des charges générales ou 2 A à 250 V CA / 30 V CC pour des charges inductives (c.-à-d. un relais). Il n’est pas recommandé d’utiliser ce relais de fonction pour commander des systèmes essentiels (dosage chimique, etc.)

Démarrage en douceur du moteur
Normalement, lorsqu’il y a une demande en eau, le SubDrive/MonoDrive fonctionne afin de maintenir de manière précise la pression du système. Lorsque le SubDrive/MonoDrive détecte que de l’eau est utilisée, le contrôleur « intensifie » toujours le régime du moteur tout en augmentant la tension de manière progressive, pour conserver un moteur plus frais et une intensité de démarrage plus faible comparativement aux systèmes d’eau traditionnels. Dans ces cas où la demande en eau est faible, le système peut s’activer et s’éteindre à un régime faible. En raison de la caractéristique de démarrage en douceur du contrôleur et de la conception robuste du capteur, cela n’endommage ni le moteur ni le capteur de pression.

Correction du facteur de puissance
La correction active du facteur de puissance (PFC) réduit l’intensité RMS d’entrée en permettant à l’entraînement d’utiliser une forme sinusoïdale de courant d’entrée plus propre. Cela permet une réduction de la taille du câble d’alimentation d’entrée, lorsque comparé à des applications similaires sans correction de facteur de puissance, puisque moins de courant est utilisé en moyenne par l’entraînement pour une charge donnée, comparé à des appareils sans PFC.

Wi-Fi et application mobile FE Connect
La connectivité Wi-Fi est incluse dans l’entraînement afin de permettre l’établissement d’une connexion entre l’entraînement et un seul appareil prenant Wi-Fi en charge (téléphone intelligent, tablette, etc.) Cette connexion peut être utilisée afin d’effectuer des réglages avancés, de surveiller les caractéristiques de l’entraînement et de consulter l’historique des défaillances lorsqu’on utilise l’application mobile FE Connect. Consultez la section Configuration avancée à la page 33 de ce manuel pour plus de détails concernant les possibilités offertes par la connexion Wi-Fi.

Temps de décalage de sous-charge réglable
Le temps de décalage de sous-charge détermine pendant combien de temps l’entraînement attend avant de démarrer à la suite d’un événement de sous-charge. Le temps par défaut est de 5 min, mais il est réglable par l’utilisateur à une valeur entre 1 m et 48 h, au moyen de l’interface Wi-Fi.
Historique de défaillance de diagnostic du système

En plus de réguler la pression de la pompe et de surveiller de manière précise le fonctionnement du moteur, le SubDrive/MonoDrive surveille en continu le rendement du système et peut détecter toute une gamme de conditions anormales. Dans plusieurs cas, le contrôleur compense au besoin pour maintenir un fonctionnement continu du système; cependant, s’il existe un risque élevé de dommages à l’équipement, le contrôleur protège le système et affiche la condition de défaillance. Si possible, le contrôleur tente de se redémarrer lorsque la condition de défaillance disparaît. Chaque fois qu’une défaillance est détectée dans le système, l’entraînement enregistre la défaillance et le temps de fonctionnement écoulé au moment de la défaillance. Un maximum de 500 événements sont enregistrés et peuvent être consultés au moyen de la connexion Wi-Fi.

Détection de défaut à la terre

L’entraînement est muni d’une protection de défaut à la terre pour la sortie du moteur. Dans le cas où une fuite de courant vers la terre est détectée sur la sortie du moteur, l’entraînement indique alors un Défaut à la terre (code de défaillance F16). Pour plus d’information, consultez le tableau Codes de défaillance de diagnostic à la fin de ce manuel d’instruction.

Modes de choc réglables

Au moyen de la Configuration avancée (Wi-Fi et application FE Connect), les réglages de mode de choc et de taille du réservoir peuvent être modifiés. Le mode de choc contrôle à quel point l’entraînement pompe pour des périodes très courtes avant de tenter de s’arrêter. L’entraînement est livré avec des réglages par défaut qui sont compatibles avec la plupart des applications SubDrive. Pour des applications avec des réservoirs pressurisés de grande taille ou qui présentent des difficultés à s’arrêter, le mode de choc peut être réglé à une valeur plus agressive. Le comportement du système doit être surveillé lorsque ces réglages sont modifiés, afin d’assurer un fonctionnement approprié.

Pièces remplaçables

Ventilateur de refroidissement

Si le ventilateur de refroidissement est défectueux et cause de fréquentes défaillances d’Entraînement surchauffé (code de défaillance F7), le ventilateur peut être remplacé. Consultez la section Accessoires pour de l’information concernant les trousses de remplacement de ventilateur NEMA 3R.

Panneau d’entrée de pression

Si la foudre crée une sursensio de l’entrée du capteur de pression vers l’entraînement, le Panneau d’entrée de pression peut être endommagé et empêcher l’entraînement de fonctionner. Plutôt que de remplacer l’entraînement au complet, le Panneau d’entrée de pression peut être remplacé afin de réparer l’entraînement. Consultez la section Accessoires pour de l’information concernant la trousse de remplacement du panneau d’entrée de capteur de pression.
Dans la boîte

A. Unité contrôleur
B. Capteur de pression et amorce
C. Outil de réglage du capteur
D. Câble du capteur
E. Guide d’installation
F. Raccord de réduction de tension

Comment cela fonctionne

Le contrôleur Franklin Electric SubDrive/MonoDrive est conçu pour faire partie d’un système qui comprend seulement quatre (4) composants :

A. Pompe standard et moteur Franklin Electric
B. Contrôleur SubDrive/MonoDrive
C. Petit réservoir pressurisé (consultez le tableau 3, page 20)
D. Capteur de pression Franklin Electric (approuvé NSF 61)
Écran de l’entraînement

Système en veille
Lorsque l’unité SubDrive/MonoDrive est allumée et en veille (sans pomper d’eau), l’écran est illuminé et affiché « - - - ».

Entraînement en fonction
Lorsque l’unité SubDrive/MonoDrive commande le moteur et la pompe, l’écran est illuminé et la fréquence du moteur ou de la pompe (en Hz, ou cycles par seconde) est affichée à l’écran.

Défaillance détectée
Lorsqu’une condition de défaillance est détectée dans le système, l’écran de l’entraînement s’illumine en rouge et le code de défaillance s’affiche. Tous les codes de défaillance commencent par « F », suivi d’un nombre à un ou à deux chiffres. Pour plus d’information, consultez le tableau Codes de défaillance de diagnostic à la fin de ce manuel.

Emplacement de l’entraînement

Le contrôleur SubDrive/MonoDrive est conçu pour fonctionner à des températures ambiantes de -25 °C à 50 °C (-13 °F à 122 °F) avec une entrée de 230 V CA. Les recommandations suivantes vous aideront à choisir l’emplacement approprié pour le contrôleur.

- Un raccord en T est recommandé pour fixer le réservoir, le capteur de pression, la jauge de pression et la soupape de surpression à une jonction. Si un raccord en T n’est pas utilisé, le capteur de pression doit être situé à au plus 1,8 m (6 pi) du réservoir pressurisé, afin de réduire les fluctuations de pression. Il ne doit y avoir aucun coude entre le réservoir et le capteur de pression.
- L’unité doit être fixée à une structure de soutien robuste, comme un mur ou un poteau de soutien. Veuillez tenir compte du poids de l’unité.
- Les composants électroniques dans le SubDrive/MonoDrive sont refroidis à l’air. Par conséquent, il doit y avoir un dégagement d’au moins 15,24 cm (6 po) de chaque côté de l’unité ainsi que sous celle-ci, afin de permettre à l’air de circuler.
- L’emplacement de fixation doit avoir accès à une alimentation électrique de 230 V CA et au câblage du moteur submersible. Pour éviter toute interférence possible avec d’autres appareils, veuillez consulter la section Acheminement des fils de ce manuel et respectez toutes les précautions concernant l’acheminement de câbles d’alimentation.
Considérations propres à l’utilisation extérieure

Le contrôleur est approprié pour les utilisations extérieures avec une homologation NEMA 3R; cependant, les éléments suivants doivent être considérés si l’on veut installer le contrôleur à l’extérieur :

- L’unité DOIT être fixée à la verticale avec l’extrémité du câblage orientée vers le bas et le couvercle doit être fixé solidement (cela s’applique également aux installations à l’intérieur).
- Le contrôleur doit être fixé sur une surface ou une plaque arrière au moins aussi grande que les dimensions extérieures du boîtier du contrôleur.
- Les boîtiers NEMA 3R ne peuvent résister qu’à la pluie tombant directement à la verticale. Le contrôleur doit être protégé contre l’eau vaporisée ou projetée par un tuyau, de même que la pluie balayée par le vent. Sinon, une défaillance du contrôleur pourrait se produire.
- Le contrôleur NE doit PAS être placé à la lumière directe du soleil ou à un autre emplacement sujet à des conditions extrêmes de température ou d’humidité.
• Si l’entraînement est installé dans une emplacement où des débris, de petits animaux ou des insectes sont susceptibles de pénétrer dans l’entraînement, une trousse de filtre à air supplémentaire devrait être installée. Consultez la page Accessoires pour de l’information sur les commandes.

Acheminement des fils

Afin d’assurer une protection optimale contre les interférences avec d’autres appareils, veuillez prendre les précautions suivantes :

- NE DISPOSEZ PAS les fils d'alimentation d'entrée et de moteur ensemble.
- Séparez-les d’au moins 20,3 cm (8 po)
- Lorsque possible, NE DISPOSEZ PAS les fils d'alimentation d'entrée d'entraînement ou de moteur en parallèle avec le câblage de la maison. Évitez d’acheminer les fils sortant de l’immeuble en parallèle avec les fils du moteur.

Le fil de connexion de sortie vers le moteur doit sortir de la maison le plus rapidement possible.
S'il est nécessaire d’acheminer le câblage en parallèle, maintenez les fils du moteur et d’alimentation d’entrée de l’ entraînement à au moins 20,3 cm (8 po) de l’autre câblage de la maison.
Mise à la terre

Pour assurer la sécurité et le rendement, veuillez respecter les exigences suivantes concernant la mise à la terre :

Assurez-vous qu’une tige de mise à la terre des services publics appropriée est installée et connectée.

Un fil de mise à la terre de l’alimentation d’entrée à partir du panneau d’alimentation doit être connecté à l’entraînement.

Un fil séparé de mise à la terre de sortie à partir de l’entraînement doit être branché au moteur (les fils du moteur et de la mise à la terre doivent être attachés ensemble).

Évitez les chemins multiples de mise à la terre.
Tailles du fusible/disjoncteur et des fils

Les tableaux suivants présentent les fusibles/disjoncteurs homologués et les longueurs maximales permises de fils pour la connexion à un SubDrive/MonoDrive :

Tableau 1 : Tailles de disjoncteur et longueurs maximales de câble d’entrée (en pi) En fonction d’une baisse de tension de 3 %

<table>
<thead>
<tr>
<th>Famille de modèle</th>
<th>Intensité (en A) du fusible/disjoncteur homologué</th>
<th>Tension (en V) d’entrée nominale</th>
<th>Calibres AWG des fils de cuivre, avec isolation à 75 °C (167 °F) sauf mention contraire</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>MonoDrive</td>
<td>15</td>
<td>208</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>230</td>
<td>95</td>
</tr>
<tr>
<td>SubDrive15</td>
<td>15</td>
<td>208</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>230</td>
<td>85</td>
</tr>
<tr>
<td>MonoDriveXT</td>
<td>20</td>
<td>208</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>230</td>
<td>-</td>
</tr>
<tr>
<td>SubDrive20</td>
<td>20</td>
<td>208</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>230</td>
<td>-</td>
</tr>
<tr>
<td>SubDrive30</td>
<td>25</td>
<td>208</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>230</td>
<td>-</td>
</tr>
</tbody>
</table>

Les nombres surlignés réfèrent à un fil avec une isolation à 90 °C (194 °F) seulement
Tableau 2 : Longueur maximale de câble de moteur (en pieds)

<table>
<thead>
<tr>
<th>Modèle de contrôleur</th>
<th>Modèle du moteur Franklin Electric</th>
<th>HP</th>
<th>Calibres AWG des fils de cuivre, avec isolation à 75 °C (167 °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>SubDrive15</td>
<td>234 514 xxxx</td>
<td>1,5 (1,1 kW)</td>
<td>420</td>
</tr>
<tr>
<td>SubDrive20</td>
<td>234 315 xxxx</td>
<td>2,0 (1,5 kW)</td>
<td>320</td>
</tr>
<tr>
<td>SubDrive30</td>
<td>234 316 xxxx</td>
<td>3,0 (2,2 kW)</td>
<td>240</td>
</tr>
<tr>
<td>MonoDrive</td>
<td>214 505 xxxx</td>
<td>0,5 (0,37 kW)</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>214 507 xxxx</td>
<td>0,75 (0,55 kW)</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>214 508 xxxx</td>
<td>1,0 (0,75 kW)</td>
<td>250</td>
</tr>
<tr>
<td>MonoDriveXT</td>
<td>214 508 xxxx</td>
<td>1,0 (0,75 kW)</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>224 300 xxxx</td>
<td>1,5 (1,1 kW)</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>224 301 xxxx</td>
<td>2,0 (1,5 kW)</td>
<td>190</td>
</tr>
</tbody>
</table>

REMARQUE : 1 pi = 0,305 m

Un fil de 3,05 m (10 pi) est fourni avec le SubDrive/MonoDrive pour connecter le capteur de pression.

REMARQUE :
- Les longueurs maximales permises de fils sont mesurées entre le contrôleur et le moteur.
- Des fils d’aluminium ne doivent pas être utilisés avec le SubDrive/MonoDrive.
- Tout le câblage doit se conformer au Code national de l’électricité ainsi qu’aux codes locaux.
- L’intensité minimale du disjoncteur du MonoDrive peut être inférieure aux spécifications du manuel AIM pour les moteurs listés, en raison des caractéristiques de démarrage en douceur du contrôleur MonoDrive.
- L’intensité minimale du disjoncteur du SubDrive peut sembler dépasser les spécifications du manuel AIM pour les moteurs listés, car les contrôleurs SubDrive sont alimentés avec un service monophasé plutôt que triphasé.
- Remarque sur la protection contre la surcharge du moteur : Les composants électroniques de l’ entraînement protègent le moteur contre la surcharge en empêchant le courant dans le moteur de dépasser l’intensité de facteur de charge (SFA) maximal. La détection d’une surchauffe du moteur n’est pas effectuée par l’ entraînement.

Sélection du générateur

La puissance de base d’une génératrice pour le système SubDrive/MonoDrive de Franklin Electric est 1,5 fois la puissance (en W) d’entrée maximale consommée par l’ entraînement, arrondie à la puissance normale suivante de la génératrice.

Puissances minimales recommandées pour une génératrice :

MonoDrive
- 1/2 hp = 2 000 W (2 kW)
- 3/4 hp = 3 000 W (3 kW)
- 1 hp = 3 500 W (3,5 kW)

MonoDriveXT
- 1,5 hp = 4 000 W (4 kW)
- 2 hp = 5 000 W (5 kW)

SubDrive15 = 3 500 W (3,5 kW)
SubDrive20 = 5 700 W (6 kW)
SubDrive30 = 7 000 W (7 kW)

Remarque : À ne pas utiliser sur un disjoncteur de fuite de terre (GFCI). Si une génératrice régulée de manière externe est utilisée, vérifiez que la tension, la fréquence et le régime en veille sont appropriés pour alimenter l’ entraînement.
Sélection du tuyau et du réservoir

Le SubDrive/MonoDrive ne requiert qu’un petit réservoir pressurisé pour maintenir une pression constante. (Consultez le tableau ci-dessous pour connaître la taille recommandée de réservoir.)

Pour les pompes d’une capacité nominale de 45,4 lpm (12 gpm) ou plus, un réservoir légèrement plus grand est recommandé pour assurer une régulation optimale de la pression. Le SubDrive/MonoDrive peut également utiliser un réservoir existant d’une capacité beaucoup plus grande.

Tableau 3 : Taille minimale de réservoir pressurisé (capacité totale)

<table>
<thead>
<tr>
<th>Débit nominal de pompe</th>
<th>Modèle de contrôleur</th>
<th>Taille minimale de réservoir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moins de 45,4 lpm (12 gpm)</td>
<td>SubDrive15 ou MonoDrive</td>
<td>7,6 l (2 gal)</td>
</tr>
<tr>
<td></td>
<td>SubDrive20</td>
<td>15,1 l (4 gal)</td>
</tr>
<tr>
<td></td>
<td>SubDrive30 ou MonoDriveXT</td>
<td>15,1 l (4 gal)</td>
</tr>
<tr>
<td>45,4 lpm (12 gpm) ou plus</td>
<td>SubDrive15 ou MonoDrive</td>
<td>15,1 l (4 gal)</td>
</tr>
<tr>
<td></td>
<td>SubDrive20</td>
<td>30,3 l (8 gal)</td>
</tr>
<tr>
<td></td>
<td>SubDrive30 ou MonoDriveXT</td>
<td>30,3 l (8 gal)</td>
</tr>
</tbody>
</table>

Le réglage de précharge du réservoir pressurisé devrait être à 70 % du réglage du capteur de pression du système, tel qu’indiqué dans le tableau 4. Le diamètre minimal de tuyau d’alimentation devrait être choisi afin de ne pas dépasser une vitesse maximale de 2,4 m/s (8 pi/s). (Consultez le tableau 5 ci-dessous pour le diamètre minimal de tuyau.)

Tableau 4 : Guide de réglage de pression

<table>
<thead>
<tr>
<th>Vitesse maximale 2,4 m/s (8 pi/s)</th>
<th>Diam. min. de tuyau</th>
<th>GPM (lpm) max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 po</td>
<td>4,0 (18,5)</td>
<td></td>
</tr>
<tr>
<td>3/4 po</td>
<td>11,0 (41,6)</td>
<td></td>
</tr>
<tr>
<td>1 po</td>
<td>19,6 (74,2)</td>
<td></td>
</tr>
<tr>
<td>1-1/4 po</td>
<td>30,6 (115,6)</td>
<td></td>
</tr>
<tr>
<td>1-1/2 po</td>
<td>44,1 (166,9)</td>
<td></td>
</tr>
<tr>
<td>2 po</td>
<td>78,3 (304,4)</td>
<td></td>
</tr>
<tr>
<td>2-1/2 po</td>
<td>170,3 (667,4)</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 5 : Sélection du tuyau et du réservoir

Le SubDrive/MonoDrive ne requiert qu’un petit réservoir pressurisé pour maintenir une pression constante. (Consultez le tableau ci-dessous pour connaître la taille recommandée de réservoir.)

Pour les pompes d’une capacité nominale de 45,4 lpm (12 gpm) ou plus, un réservoir légèrement plus grand est recommandé pour assurer une régulation optimale de la pression. Le SubDrive/MonoDrive peut également utiliser un réservoir existant d’une capacité beaucoup plus grande.
Taille et rendement de la pompe

SubDrive15
Le SubDrive15 peut être utilisé avec des pompes de 3/4 hp (0,55 kW) installées sur des moteurs triphasés Franklin Electric de 1,5 hp (1,1 kW). En général, le SubDrive15 améliorera le rendement d’une pompe de 3/4 hp (0,55 kW) pour la rendre équivalente (ou mieux) à une pompe traditionnelle de 1,5 hp (1,1 kW) avec le même débit nominal (série de pompes).

Pour choisir la pompe de 3/4 hp (0,55 kW) appropriée, choisissez d’abord une courbe de 1,5 hp (1,1 kW) qui satisfait les exigences de charge hydraulique et de débit de l’application. Utilisez la pompe de 3/4 hp (0,55 kW) dans la même série de pompes (débit nominal). Le SubDrive15 réglera la vitesse de la pompe pour produire le rendement de la courbe de 1,5 hp (1,1 kW). Un EXEMPLE de cela est illustré dans le graphique à droite. Veuillez consulter la courbe de pompe du fabricant de la pompe pour votre application particulière.

Le SubDrive15 peut également être réglé pour actionner une pompe de 1,0 hp (0,75 kW) ou de 1,5 hp (1,1 kW) si désiré; mais les pompes plus puissantes suivront tout de même la courbe de 1,5 hp (1,1 kW) et ne peuvent être utilisées qu’avec un moteur de 1,5 hp (1,1 kW). Pour utiliser une taille différente de pompe, un commutateur DIP doit être réglé pour sélectionner la bonne valeur de pompe. Sinon, le SubDrive15 pourrait déclencher des défaillances erronées.

Consultez la section Configuration de base de ce manuel pour de l’information sur le commutateur DIP et ses réglages.

⚠️ AVERTISSEMENT
Des décharges électriques graves ou mortelles peuvent résulter d’un contact avec des composants électriques internes.
NE tentez JAMAIS de modifier les réglages du commutateur DIP avant que l’alimentation électrique n’ait été coupée et que cinq minutes se soient écoulées pour permettre aux tensions internes de se dissiper! L’alimentation électrique doit être coupée pour que le réglage du commutateur DIP soit appliqué.
SubDrive20

Le SubDrive20 peut être utilisé avec des pompes de 1,0 hp (0,75 kW) installées sur des moteurs triphasés Franklin Electric de 2,0 hp (1,5 kW). En général, le SubDrive20 améliorera le rendement d’une pompe de 1,0 hp (0,75 kW) pour la rendre équivalente (ou mieux) à une pompe traditionnelle de 2,0 hp (1,5 kW) avec le même débit nominal (série de pompes).

Pour choisir la pompe de 1,0 hp (0,75 kW) appropriée, choisissez d’abord une courbe de 2,0 hp (1,5 kW) qui satisfait les exigences de charge hydraulique et de débit de l’application. Utilisez la pompe de 1,0 hp (0,75 kW) dans la même série de pompes (débit nominal). Le SubDrive20 réglera la vitesse de la pompe pour produire le rendement de la courbe de 2,0 hp (1,5 kW).

Un EXEMPLE de cela est illustré dans le graphique à droite. Veuillez consulter la courbe de pompe du fabricant de la pompe pour votre application particulière.

Le SubDrive20 peut également être réglé pour actionner une pompe de 1,5 hp (1,1 kW) ou de 2,0 hp (1,5 kW) si désiré; mais les pompes plus puissantes suivront tout de même la courbe de 2,0 hp (1,5 kW) et ne peuvent être utilisées qu’avec un moteur de 2,0 hp (1,5 kW). Pour utiliser une taille différente de pompe, un commutateur DIP doit être réglé pour sélectionner la bonne valeur de pompe. Sinon, le SubDrive20 pourrait déclencher des défaillances erronées.

Consultez la section Configuration de base de ce manuel pour de l’information sur le commutateur DIP et ses réglages.

AVERTISSEMENT

Des décharges électriques graves ou mortelles peuvent résulter d’un contact avec des composants électriques internes. NE tentez JAMAIS de modifier les réglages du commutateur DIP avant que l’alimentation électrique n’ait été coupée et que cinq minutes se soient écoulées pour permettre aux tensions internes de se dissiper! L’alimentation électrique doit être coupée pour que le réglage du commutateur DIP soit appliqué.
Le SubDrive30 peut être utilisé avec des pompes de 1,5 hp (1,1 kW) installées sur des moteurs triphasés Franklin Electric de 3,0 hp (2,2 kW). En général, le SubDrive30 améliorera le rendement d’une pompe de 1,5 hp (1,1 kW) pour la rendre équivalente (ou mieux) à une pompe traditionnelle de 3,0 hp (2,2 kW) avec le même débit nominal (série de pompes).

Pour choisir la pompe de 1,5 hp (1,1 kW) appropriée, choisissez d’abord une courbe de 3,0 hp (2,2 kW) qui satisfait les exigences de charge hydraulique et de débit de l’application. Utilisez la pompe de 1,5 hp (1,1 kW) dans la même série de pompes (débit nominal). Le SubDrive30 réglera la vitesse de la pompe pour produire le rendement de la courbe de 3,0 hp (2,2 kW). Un EXEMPLE de cela est illustré dans le graphique à droite. Veuillez consulter la courbe de pompe du fabricant de la pompe pour votre application particulière.

Le SubDrive30 peut également être réglé pour actionner une pompe de 2,0 hp (1,5 kW) ou de 3,0 hp (2,2 kW) si désiré; mais les pompes plus puissantes suivront tout de même la courbe de 3,0 hp (2,2 kW) et ne peuvent être utilisées qu’avec un moteur de 3,0 hp (2,2 kW). Pour utiliser une taille différente de pompe, un commutateur DIP doit être réglé pour sélectionner la bonne valeur de pompe. Sinon, le SubDrive30 pourrait déclencher des défaillances erronées.

Consultez la section Configuration de base de ce manuel pour de l’information sur le commutateur DIP et ses réglages.

⚠️ AVERTISSEMENT
Des décharges électriques graves ou mortelles peuvent résulter d’un contact avec des composants électriques internes.
NE tentez JAMAIS de modifier les réglages du commutateur DIP avant que l’alimentation électrique n’ait été coupée et que cinq minutes se soient écoulées pour permettre aux tensions internes de se dissiper! L’alimentation électrique doit être coupée pour que le réglage du commutateur DIP soit appliqué.
MonoDrive
Le MonoDrive est conçu pour convertir un système de pompe traditionnel de 1/2 hp (0,37 kW), de 3/4 hp (0,55 kW) ou de 1,0 hp (0,75 kW) en un système à pression constante et à vitesse variable, en remplaçant simplement le boîtier de commande à 3 fils et l'interrupteur à pression. La puissance de sortie maximale de pompe avec le MonoDrive est similaire au rendement atteint au moyen d’un boîtier de commande traditionnel. Par conséquent, les critères de sélection de pompe sont les mêmes que si un boîtier de commande était utilisé. Veuillez consulter la documentation du fabricant de la pompe pour connaître la procédure détaillée de sélection de pompe.

Si une pompe et un moteur décrits ci-dessus sont déjà installés dans le système et que les composants du système de puits sont en bon état de fonctionnement, aucune autre mise à niveau du système n’est requise. Cependant, si la pompe et le moteur en place n’ont pas été choisis avec soin, ou si les composants du système de puits ne sont pas en bon état de fonctionnement, le MonoDrive ne peut pas être utilisé pour corriger le problème ou prolonger la durée de vie des composants utilisés.

Si la configuration ne correspond pas aux valeurs nominales de la pompe et du moteur, des défaillances erronées pourraient se produire. Consultez la section Configuration de base de ce manuel pour de l’information sur le commutateur DIP et ses réglages.

MonoDriveXT
Le MonoDriveXT est conçu pour convertir un système de pompe traditionnel de 1,0 hp (0,75 kW), de 1,5 hp (1,1 kW) ou de 2,0 hp (1,5 kW) en un système à pression constante et à vitesse variable, en remplaçant simplement le boîtier de commande à 3 fils et l'interrupteur à pression. La puissance de sortie maximale de pompe avec le MonoDriveXT est similaire au rendement atteint au moyen d’un boîtier de commande traditionnel. Par conséquent, les critères de sélection de pompe sont les mêmes que si un boîtier de commande était utilisé. Veuillez consulter la documentation du fabricant de la pompe pour connaître la procédure détaillée de sélection de pompe.

Si une pompe et un moteur décrits ci-dessus sont déjà installés dans le système et que les composants du système de puits sont en bon état de fonctionnement, aucune autre mise à niveau du système n’est requise. Cependant, si la pompe et le moteur en place n’ont pas été choisis avec soin, ou si les composants du système de puits ne sont pas en bon état de fonctionnement, le MonoDriveXT ne peut pas être utilisé pour corriger le problème ou prolonger la durée de vie des composants utilisés.

Si la configuration ne correspond pas aux valeurs nominales de la pompe et du moteur, des défaillances erronées pourraient se produire. Consultez la section Configuration de base de ce manuel pour de l’information sur le commutateur DIP et ses réglages.
Le contrôleur est fixé au moyen de l’onglet de suspension sur la partie supérieure du boîtier et de deux (2) trous de fixation supplémentaires sur la partie arrière du contrôleur. Les trois (3) emplacements de trou de vis doivent tous être utilisés afin de s’assurer que le contrôleur est fixé de manière sécuritaire à la plaque arrière ou au mur.
SubDrive/MonoDrive

<table>
<thead>
<tr>
<th>MODÈLE</th>
<th>« A »</th>
<th>« B »</th>
<th>« C »</th>
<th>« D »</th>
</tr>
</thead>
<tbody>
<tr>
<td>SubDrive15, MonoDrive</td>
<td>464,2</td>
<td>355,2</td>
<td>454,7</td>
<td>427,4</td>
</tr>
<tr>
<td></td>
<td>[18,28]</td>
<td>[13,98]</td>
<td>[17,90]</td>
<td>[16,83]</td>
</tr>
<tr>
<td>SubDrive20, SubDrive30, MonoDriveXT</td>
<td>539,4</td>
<td>430,4</td>
<td>529,9</td>
<td>502,6</td>
</tr>
<tr>
<td></td>
<td>[21,24]</td>
<td>[16,94]</td>
<td>[20,86]</td>
<td>[19,79]</td>
</tr>
</tbody>
</table>
Câblage de l’entraînement

⚠️ AVERTISSEMENT

Le fait de ne pas brancher le moteur, le SubDrive/MonoDrive, la plomberie en métal et tous les autres métaux à proximité du moteur ou du câble à la borne de mise à la terre de l’alimentation électrique au moyen d’un fil dont le diamètre n’est pas inférieur à celui des fils du câble du moteur peut provoquer une décharge électrique grave ou mortelle. Pour réduire le risque de décharge électrique, débranchez l’alimentation avant de travailler sur le réseau d’eau ou à proximité. N’utilisez pas le moteur dans les zones de baignade.

1. Vérifiez que l’alimentation a été coupée au niveau du disjoncteur principal.

2. Vérifiez que le circuit de dérivation séparé du SubDrive/MonoDrive est muni d’un disjoncteur de taille appropriée. (Consultez le tableau 1, p. 18 pour la taille minimale de disjoncteur.)

3. Utilisez des connecteurs de conduit ou de réduction de tension appropriés. Vous trouverez ci-dessous les tailles de trou et des débouchures de conduit.

4. Retirez le couvercle du SubDrive/MonoDrive.

5. Faites passer les fils de connexion du moteur par l’ouverture sur le côté inférieur droit de l’unité et connectez-les aux emplacements du bloc de bornes marqués en ♦ (vert, fil de mise à la terre), rouge, jaune et noir.
6. Faites passer les fils de connexion de l'alimentation 230 V CA par l’ouverture plus grande sur le côté inférieur gauche du contrôleur SubDrive/MonoDrive et connectez-les aux bornes L1, L2 et ½.

Remarque : Le Panneau d’entrée de pression comporte deux (2) bornes appelées « AUX IN » qui peuvent être utilisées pour fournir une commande auxiliaire de l’entraînement. Cette connexion est en série avec le signal d’entrée du capteur de pression et n’est pas alimentée. L’appareil connecté à cette borne doit être une connexion fermée ou court-circuitée, lorsque l’on veut que l’entraînement pompe de l’eau (si la pression du système est inférieure à la pression de réglage du capteur de pression). Si « AUX IN » est un circuit ouvert, l’entraînement restera en mode veille, peu importe la pression du système. Pour utiliser les connexions « AUX IN », on doit retirer l’onglet détachable du coin inférieur droit du Panneau d’entrée de pression. Si l’onglet détachable n’est pas retiré, les connexions « AUX IN » seront toujours court-circuitées. Si l’onglet détachable est retiré et que les bornes « AUX IN » ne sont pas utilisées pour un appareil auxiliaire, les connexions « AUX IN » doivent être court-circuitées de manière manuelle.

Consultez l’illustration à droite pour connaître l’emplacement de cet onglet. Le Panneau d’entrée de pression doit être retiré de l’entraînement avant de briser l’onglet détachable afin d’éviter d’endommager l’entraînement.
Remarque : Une section de 3 m (10 pi) de câble de capteur de pression est fournie avec le contrôleur, mais il est possible d’utiliser du fil de calibre 22 AWG similaire pour des distances allant jusqu’à 30 m (100 pi) du capteur de pression. Une section de 30 m (100 pi) de câble de capteur de pression est offerte par votre distributeur Franklin Electric local. Un câble à faible capacité doit être utilisé si le capteur de pression est connecté avec un câble qui ne provient pas de Franklin Electric. Des longueurs de câble supérieures à 30 m (100 pi) ne doivent pas être utilisées, car elles peuvent provoquer un fonctionnement incorrect de l’entraînement. (Consultez la section Accessoires à la page 35 pour plus de détails.)

8. Vérifiez que l’unité SubDrive/MonoDrive est configurée de manière appropriée pour la puissance nominale en hp de la pompe et du moteur utilisés. (Consultez la section Taille de la pompe à la page 24 pour de l’information sur la configuration de l’entraînement.)

9. Replacez le couvercle. Serrez la vis à un couple de 10 po-lb (1,1 Nm).

Mesurez la précharge du réservoir à sa valve de gonflage au moyen d’un manomètre et effectuez les réglages nécessaires.

12. Le capteur de pression communique la pression du système au contrôleur SubDrive/ MonoDrive. Le capteur est préréglé à l’usine à une pression de 50 psi (3,4 bar), mais peut être réglé par l’installateur grâce à la procédure suivante :

a. Retirez le capuchon d’extrémité en caoutchouc.

b. Au moyen d’une clé Allen de 7/32 po (fournie), tournez la vis de réglage dans le sens horaire pour augmenter la pression ou dans le sens antihoraire pour réduire la pression. La plage de réglage est entre 25 et 80 psi (1,7 et 5,5 bar). Remarque : 1/4 tour = environ 3 psi (0,2 bar).

c. Replacez le capuchon d’extrémité en caoutchouc.

d. Couvrez les bornes du capteur de pression avec la gaine de caoutchouc fournie (figure X). Ne placez pas la gaine à la lumière directe du soleil.
Remarque : Assurez-vous que le système est mis à la terre de manière appropriée jusqu’au panneau d’entrée de service. Une mise à la terre incorrecte peut provoquer la perte de la protection contre la surtension et du filtrage des interférences.

Configuration de l’ entraînement

AVERTISSEMENT
Des décharges électriques graves ou mortelles peuvent résulter d’un contact avec des composants électriques internes.
NE tentez JAMAIS de modifier les réglages du commutateur DIP avant que l’alimentation électrique n’ait été coupée et que cinq minutes se soient écoulées pour permettre aux tensions internes de se dissiper! L’alimentation électrique doit être coupée pour que le réglage du commutateur DIP soit appliqué.

Configuration de base (commutateurs DIP)
Pour la configuration de base, la position 1 du DIP SW1 (interrupteur FE Connect) doit être en position « OFF » (basse) pour que les réglages du commutateur DIP et du potentiomètre de sous-charge soient reconnus.

Sélection de l’ entraînement
Les unités SubDrive ont la capacité de fonctionner en mode MonoDrive au besoin (le SubDrive15 peut être configuré en tant que MonoDrive alors que les unités SubDrive20 et SubDrive30 peuvent être configurées en tant que MonoDriveXT). Si vous souhaitez utiliser un moteur monophasé avec une unité SubDrive, assurez-vous que la position 2 du DIP SW1 est en position « ON » (haute). Cela est indiqué par « MD » imprimé au-dessus de la position 2 du DIP SW1, sur le protecteur noir. Si vous utilisez un SubDrive avec un moteur triphasé, assurez-vous que la position 2 du DIP SW1 est en position « OFF » (basse), ce qui est indiqué par « SD » imprimé sous la position 2 du DIP SW1, sur le protecteur noir (cela est le réglage par défaut pour les unités SubDrive).

Remarque : Lorsque vous utilisez un SubDrive en tant que MonoDrive, les spécifications de pompe et de moteur du MonoDrive à la page 5 s’appliquent.
Sélection de la pompe et du moteur
Le SubDrive/MonoDrive peut être configuré pour fonctionner en réglant seulement deux (2) commutateurs DIP : un (1) pour la taille du moteur et l’autre (2) pour la taille de la pompe. Les commutateurs DIP sont situés au haut du panneau d’interface utilisateur, comme illustré dans la figure ci-dessous.
Remarque : Lorsque vous utilisez un SubDrive en tant que MonoDrive, les spécifications de pompe et de moteur du MonoDrive à la page 5 s’appliquent.

Sélectionnez un (1) interrupteur DIP précis dans SW2 qui correspond à la puissance en hp du moteur utilisé, ainsi qu’un (1) interrupteur DIP précis dans SW3 qui correspond à la puissance en hp de la pompe utilisée. Les valeurs de puissance en hp correspondantes sont imprimées au-dessus des schémas SW2 et SW3, sur le protecteur noir. Si vous ne sélectionnez aucun ou plus d’un interrupteur soit dans SW2, soit dans SW3, une défaillance d’interrupteur DIP invalide sera affichée par F24 sur l’écran.

Sensibilité de sous-charge (au besoin)
La sensibilité de sous-charge DOIT être réglée seulement lorsque l’unité SubDrive/MonoDrive est ÉTEINTE. Le nouveau réglage n’est appliqué que lorsque l’entraînement est démarré.
Le contrôleur SubDrive/MonoDrive est configuré à l’usine pour assurer la détection des défaillances de sous-charge dans un large éventail d’applications de pompage. Dans de rares situations (comme certaines pompes dans des puits peu profonds), ce niveau de déclenchement peut provoquer des défaillances injustifiées. Si la pompe est installée dans un puits peu profond, activez le contrôleur puis observez le comportement du système. Une fois que le contrôleur commence à réguler la pression, vérifiez le fonctionnement à différents débits pour vous assurer que la sensibilité par défaut ne provoque pas de déclenchements injustifiés de sous-charge.
S’il devient nécessaire de réduire la sensibilité du niveau de déclenchement de sous-charge, coupez l’alimentation et attendez cinq minutes pour que le contrôleur se décharge. Une fois que les tensions internes se sont dissipées, repérez le potentiomètre de sous-charge dans le coin supérieur droit du panneau d’interface utilisateur, comme illustré dans la figure ci-dessous.
Sensibilité de sous-charge : réglage peu profond
Si la pompe est installée dans un puits extrêmement peu profond (p. ex., artésien) et que le système continue de se déclencher, vous devez régler le potentiomètre (pot) de sous-charge dans le sens horaire, à un réglage de sensibilité plus faible. Vérifiez le niveau de déclenchement de sous-charge et répétez au besoin.

Sensibilité de sous-charge : réglage profond
Dans les situations où la pompe est placée à une grande profondeur, faites fonctionner le système avec un refoulement ouvert pour pomper le contenu du puits et observez soigneusement qu’une sous-charge est détectée de manière appropriée. Si le système ne se déclenche pas comme il le devrait, le potentiomètre de sous-charge devra être réglé dans le sens horaire, à un réglage de sensibilité plus élevé.

Sélection de débit constant
Le contrôleur SubDrive/MonoDrive est configuré à l’usine pour assurer une réponse rapide pour le maintien d’une pression constante. Dans de rares situations (comme avec un embranchement de conduit d’eau avant le réservoir pressurisé), le contrôleur peut devoir être réglé pour offrir un meilleur contrôle.

Si le contrôleur est utilisé sur un système qui comporte un embranchement de conduit d’eau avant le réservoir pressurisé et près de la tête de puits, ou qui est caractérisé par des variations audibles de vitesse du PMA dans les tuyaux, un réglage du temps de réponse du contrôle de pression peut s’avérer nécessaire. Après avoir activé cette caractéristique, l’installateur doit vérifier les changements de débit et de pression, à la recherche de dépassements possibles. Un réservoir pressurisé plus grand ou une plus grande marge entre la pression de régulation et la pression de soupape de surpression peuvent être requis, car les caractéristiques de débit constant réduisent le temps de réaction du contrôleur à des changements brusques de débit.

S’il est nécessaire de régler le contrôle de pression, coupez l’alimentation et attendez que le contrôleur se décharge. Attendez 5 minutes pour permettre aux tensions internes de se dissiper, puis repérez le commutateur DIP appelé « SW1 ». Déplacez la position 4 du DIP SW1 en position « ON » (haute).
Configuration avancée (application mobile FE Connect / Wi-Fi)

Certaines caractéristiques avancées peuvent être modifiées lorsque vous êtes connecté(e) au SubDrive/MonoDrive au moyen du Wi-Fi et de l’application mobile FE Connect. Suivez les instructions ci-dessous pour vous connecter à l’entraînement et accéder à ces caractéristiques et réglages avancés.

Se connecter au Wi-Fi

1. La radio Wi-Fi de l’entraînement n’accepte les connexions que dans les quinze (15) minutes qui suivent un démarrage. Si l’entraînement est allumé depuis plus de quinze (15) minutes, redémarrez l’unité SubDrive/MonoDrive.

2. Après quelques secondes d’initialisation après le démarrage, le voyant FE Connect s’allumera sans clignoter pour indiquer qu’une connexion est disponible. Le voyant FE Connect est situé tout juste sous la fenêtre transparente de l’écran.

3. Ouvrez les réglages de connexion Wi-Fi sur l’appareil que vous désirez utiliser pour vous connecter à l’entraînement. Cela est similaire à la méthode utilisée pour se connecter à un point d’accès Wi-Fi normal. Dans la liste des connexions Wi-Fi disponibles, repérez le point d’accès « FECNCT_XXXXX », où « XXXXX » est le suffixe du numéro de série de l’entraînement auquel vous désirez vous connecter.

4. Connectez-vous au point d’accès Wi-Fi. Le voyant FE Connect sur l’entraînement clignote pour indiquer qu’une connexion est établie. Un seul (1) appareil à la fois peut se connecter à un entraînement.

Remarque: La connexion Wi-Fi demeure active pendant une période indéfinie, tant que l’appareil mobile n’est pas déconnecté du Wi-Fi de l’entraînement. Si la connexion est rompue, le Wi-Fi de l’entraînement demeure disponible pour une nouvelle connexion pendant une (1) heure suivant la déconnexion. Si vous désirez vous connecter à nouveau au Wi-Fi de l’entraînement après que l’heure soit écoulée, l’entraînement doit être redémarré.
SubDrive/MonoDrive

Accéder à l’entraînement
Après avoir établi une connexion à l’entraînement, lancez l’application mobile FE Connect. L’application mobile FE Connect peut être téléchargée du Apple App Store ou de Google Play, selon l’appareil utilisé.

Configuration
L’écran de configuration permet la configuration de caractéristiques additionnelles de l’entraînement, notamment :
- Sortie d’ entraînement*
- Taille du moteur*
- Taille de la pompe*
- Sensibilité de sous-charge*
- Temps de décalage de sous-charge
- Fréquence minimale
- Fréquence maximale
- Mode de choc
- Mode pour réservoir de grande taille
- Choc agressif
- Détection de tuyau brisé
- Débit constant*
- Unités (hp ou kW)

* Afin de changer et d’utiliser les réglages de cette page pour la sortie d’ entraînement, la taille du moteur, la taille de la pompe, la sensibilité de sous-charge et le débit constant, le commutateur DIP de FE Connect (SW1, position 1) sur l’entraînement doit être à « ON ». Sinon, l’entraînement utilisera les réglages par défaut de taille de moteur, de taille de pompe et de sensibilité de sous-charge définis au moyen des commutateurs DIP et du bouton rotatif de sensibilité de sous-charge sur l’entraînement lui-même.

Surveillance
Cet écran permet la surveillance en temps réel du système, y compris :
- État du système
- Tension d’entrée
- Tension de sortie
- Intensité de sortie
- Régime du moteur
- Informations sur le système (modèle d’ entraînement, version matérielle, version logicielle)

Journaux
Cet écran permet de consulter et d’envoyer par courriel les journaux d’historique de défaillances et de changements de configuration. Cette page affiche également le temps total de fonctionnement de l’entraînement et du moteur.
Accessoires

<table>
<thead>
<tr>
<th>Accessoire</th>
<th>Détails</th>
<th>Utilisé avec</th>
<th>Numéro de pièce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trousse de filtre à air</td>
<td>Empêche les insectes de pénétrer et d’endommager les composants internes de l’ entraînement</td>
<td>Tous les modèles</td>
<td>226 550 901</td>
</tr>
<tr>
<td>Alternateur duplex</td>
<td>Permet à un système d’eau d’alterner entre deux pompes en parallèle commandées par des unités SubDrive séparées</td>
<td>Tous les modèles</td>
<td>586 001 2000</td>
</tr>
<tr>
<td>Filtre (entrée)</td>
<td>Filtre utilisé sur l’entrée de l’ entraînement, afin de contribuer à réduire les interférences</td>
<td>Tous les modèles</td>
<td>225 198 901</td>
</tr>
<tr>
<td>Filtre (sortie)</td>
<td>Filtre utilisé sur la sortie de l’ entraînement, afin de contribuer à réduire les interférences</td>
<td>Tous les modèles (sauf SD300)</td>
<td>225 300 901</td>
</tr>
<tr>
<td>Filtre (condensateurs de surtension)</td>
<td>Condensateur utilisé sur le panneau de service, afin de contribuer à éliminer les interférences d’alimentation</td>
<td>SD15, SD20, SD30, MD, MDXT</td>
<td>225 199 901</td>
</tr>
<tr>
<td>Parafoudre</td>
<td>Monophasé (alimentation d’entrée)</td>
<td>Monophasé (alimentation d’entrée)</td>
<td>150 814 902</td>
</tr>
<tr>
<td>Trousse de remplacement de ventilateur NEMA 3R</td>
<td>Ventilateur de remplacement</td>
<td>SD15 et MD</td>
<td>226 545 901</td>
</tr>
<tr>
<td>Trousse de remplacement de ventilateur NEMA 3R</td>
<td>Ventilateur de remplacement</td>
<td>SD20, SD30, MDXT</td>
<td>226 545 902</td>
</tr>
<tr>
<td>Capteur de pression</td>
<td>Règle la pression dans le système d’eau de 75 à 150 psi (câble à deux fils de connexion)</td>
<td>Tous les modèles</td>
<td>225 970 901</td>
</tr>
<tr>
<td>Capteur de pression</td>
<td>Règle la pression dans le système d’eau de 25 à 80 psi (câble à deux fils de connexion)</td>
<td>Tous les modèles</td>
<td>223 995 901</td>
</tr>
<tr>
<td>Trousse de câble de capteur (intérieur)</td>
<td>30 m (100 pi) de câble 22 AWG (câble à 2 fils de connexion)</td>
<td>SD15, SD20, SD30, MD et MDXT</td>
<td>223 995 902</td>
</tr>
<tr>
<td>Câble d’enfouissement direct du capteur</td>
<td>Conçu pour être installé dans une tranchée souterraine sans utiliser de conduit pour le protéger (câble à 4 fils de connexion)</td>
<td>Tous les modèles; 3 m (10 pi)</td>
<td>225 800 901</td>
</tr>
<tr>
<td>Trousse de rabattement de réservoir</td>
<td>Permet d’utiliser l’eau stockée dans le réservoir pendant les périodes de demande à faible débit</td>
<td>Tous les modèles; 3 m (10 pi)</td>
<td>225 700 901</td>
</tr>
<tr>
<td>Panneau de remplacement d’entrée de capteur de pression</td>
<td>Panneau de remplacement pour les entraînements qui ont subi une surtension de l’entrée du capteur de pression</td>
<td>Tous les modèles</td>
<td>226 540 901</td>
</tr>
</tbody>
</table>
CODES DE DÉFAILLANCE DE DIAGNOSTIC

<table>
<thead>
<tr>
<th>NOMBRE DE CLIGNOTEMENTS</th>
<th>DÉFAILLANCE</th>
<th>CAUSE POSSIBLE</th>
<th>MESURE CORRECTIVE</th>
</tr>
</thead>
</table>
| F1 | SOUS-CHARGE DU MOTEUR | - Puits excessivement pompé
- Arbre ou raccord brisés
- Tamis obstrué, pompe usée
- Pompe bloquée par de l'air ou du gaz
- SubDrive mal configuré pour l’extrémité de la pompe
- Réglage incorrect de sensibilité de sous-charge | - Fréquence près du maximum alors que la charge est inférieure à la sensibilité de sous-charge configurée (potentiomètre ou Wi-Fi)
- Système pompe jusqu’à l’aspiration de pompe (manque d’eau)
- Pompe à faible tension et statique élevée : réinitialisez le potentiomètre à une sensibilité plus faible s’il ne manque pas d’eau
- Vérifiez la rotation de la pompe (SubDrive seulement), reconnectez pour une rotation appropriée au besoin
- Pompe bloquée par de l’air ou du gaz : si possible, positionnez plus profondément dans le puits pour réduire le problème
- Vérifiez que les commutateurs DIP sont réglés de manière appropriée
- Vérifiez le réglage de sensibilité de sous-charge (réglage du potentiomètre ou par Wi-Fi, selon ce qui s’applique) | |
| F2 | SOUS-TENSION | - Faible tension de ligne
- Filts de connexion d'entrée mal connectés
- Connexion lâche au disjoncteur ou au panneau | - Faible tension de ligne, inférieure à 150 V CA (plage de fonctionnement normal : 190 à 260 V CA)
- Vérifiez les connexions d’alimentation entrent et corrigez ou serrez le cas échéant
- Corrigez la tension entrante : vérifiez le disjoncteur ou les fusibles, communiquez avec le fournisseur d’électricité | |
| F3 | INTENSITÉ EXCESSIVE / POMPE VERROUILLÉE | - Mauvais alignement du moteur ou de la pompe
- Pompe ou moteur tatinsants
- Pompe ou moteur verrouillés
- Présence d’abrasifs dans la pompe
- Longueur excessive de câble du moteur | - Intensité au-dessus de la LFS à 30 Hz
- Retirez et réparez ou remplacez, au besoin
- Réduisez la longueur de câble du moteur Respectez le tableau de longueur maximale de câble de moteur | |
| F4 | CÂBLAGE INCORRECT | - MonoDrive seulement
- Mauvaises valeurs de résistances sur les éléments principaux et de démarrage | - Mauvaise résistance pendant le test CC au démarrage
- Vérifiez le câblage, la taille du moteur et le réglage du commutateur DIP; réglez ou réparez au besoin | |
| F5 | PHASE OUVERTE | - Moteur ou câble de dérivation défectueux
- Mauvais moteur | - Lecture ouverte pendant le test CC au démarrage
- Vérifiez la résistance du câble de démarrage et du moteur, serrez les connexions de sortie, réparez ou remplacez au besoin, utilisez un moteur “sec” pour vérifier les fonctions de l’entraînement; si l’entraînement ne fonctionne pas et affiche une défaillance de sous-charge, remplacez l’entraînement | |
| F6 | COURT-CIRCUIT | - Lorsqu’une défaillance est affichée immédiatement après le démarrage, présence d’un court-circuit en raison d’une connexion lâche ou d’un câble, d’une épissure ou d’un moteur défectueux | - Intensité dépasse 25 A lors du test CC au démarrage ou dépasse l’intensité de facteur de service pendant le fonctionnement
- Câblage de sortie incorrect, court-circuit phase à phase, court-circuit phase à mise à la terre dans le câblage ou le moteur
- Si une défaillance se présente après la réinitialisation et le retrait des fils de connexion du moteur, remplacez l’entraînement | |
| F7 | ENTRAÎNEMENT SURCHAUFFÉ | - Température ambiante élevée
- Lumière directe du soleil
- Obstruction du débit d'air | - Le dissipateur thermique de l’entraînement a dépassé la température maximale nominale; doit redescendre sous 90 °C (194 °F) pour redémarrer
- Ventilateur bloqué ou inutilisable, température ambiante au-dessus de 50 °C (122 °F), lumière directe du soleil, débit d’air bloqué
- Remplacez le ventilateur ou déplacez l’entraînement, au besoin
- Retirez les débris de l’entrée/sortie de ventilateur
- Retirez et nettoyez la trousse facultative de filtre d’air (si installée) | |
| F9 | DÉFAILLANCE INTERNE DE LA PCB | - Une défaillance interne à l’entraînement a été détectée | - Communiquez avec le personnel d’entretien Franklin Electric
- Un remplacement de l’unité pourrait être nécessaire. Communiquez avec votre fournisseur. | |
| F12 | SURTENSION | - Tension élevée de ligne
- Tension interne trop élevée | - Tension de ligne élevée
- Vérifiez les connexions d’alimentation entrent et corrigez ou serrez le cas échéant
- Si la tension de ligne est stable et qu’une mesure est inférieure à 260 V CA, mais que le problème persiste, communiquez avec le personnel d’entretien Franklin Electric | |

Coupez l’alimentation, déconnectez les fils de connexion au moteur et allumez le SubDrive :
- Si le SubDrive ne donne pas une défaillance de « phase ouverte » (F5), il y a un problème avec le SubDrive.
- Connectez le SubDrive à un moteur sec. Si le moteur effectue le test CC et retourne une défaillance de « sous-charge » (F1), le SubDrive fonctionne correctement.
<table>
<thead>
<tr>
<th>NOMBRE DE CLIGNOTEMENTS</th>
<th>DÉFAILLANCE</th>
<th>CAUSE POSSIBLE</th>
<th>MESURE CORRECTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F14</td>
<td>TUYAU ROMPU</td>
<td>Un tuyau rompu ou une fuite importante sont détectés dans le système.</td>
<td>Vérifiez le système pour la présence d’une fuite importante ou d’un tuyau rompu. Si le système comporte un système de gicleurs ou est utilisé pour remplir une piscine ou une citerne, désactivez la détection de tuyau rompu.</td>
</tr>
<tr>
<td>F15 (SD15/20/30 SEULEMENT)</td>
<td>DÉSÉQUILIBRE DE PHASE</td>
<td>Les courants de phase du moteur diffèrent de 20% ou plus.</td>
<td>Vérifiez la résistance du câble et des bobinages de moteur. Vérifiez que le type de moteur correspond aux réglages de l’entraînement (monophasé ou triphasé).</td>
</tr>
<tr>
<td>F16</td>
<td>DÉFAUT À LA TERRE</td>
<td>Le câble de sortie du moteur est endommagé ou exposé à l’eau.</td>
<td>Vérifiez la résistance de l’isolation du câble du moteur avec un mégohmmètre (alors qu’il n’est pas connecté à l’entraînement). Remplacez le câble du moteur au besoin.</td>
</tr>
<tr>
<td>F17</td>
<td>DÉFAILLANCE DU CAPTEUR DE TEMPÉRATURE DE L’ONDULEUR</td>
<td>Le capteur de température interne est défectueux.</td>
<td>Communiquez avec le personnel d’entretien Franklin Electric. Si le problème persiste, il peut être nécessaire de remplacer l’unité. Communiquez avec votre fournisseur.</td>
</tr>
<tr>
<td>F18 (SD20/30/MDXT SEULEMENT)</td>
<td>DÉFAILLANCE DU CAPTEUR DE TEMPÉRATURE DU PFC</td>
<td>Le capteur de température interne est défectueux.</td>
<td>Communiquez avec le personnel d’entretien Franklin Electric. Si le problème persiste, il peut être nécessaire de remplacer l’unité. Communiquez avec votre fournisseur.</td>
</tr>
<tr>
<td>F19</td>
<td>DÉFAILLANCE DE LA COMMUNICATION</td>
<td>La connexion du câble entre l’écran/la carte Wi-Fi et la carte de commande principale est lâche ou rompue.</td>
<td>Vérifiez la connexion du câble entre l’écran/la carte Wi-Fi et la carte de commande principale. Si le problème persiste, il peut être nécessaire de remplacer l’unité. Communiquez avec votre fournisseur.</td>
</tr>
<tr>
<td>F20</td>
<td>DÉFAILLANCE ATTENDUE DE L’ÉCRAN / DE LA CARTE WI-FI</td>
<td>La connexion entre l’écran/la carte Wi-Fi et la carte de commande principale n’a pas été détectée au démarrage de l’entraînement.</td>
<td>Vérifiez la connexion du câble entre l’écran/la carte Wi-Fi et la carte de commande principale. Si le problème persiste, il peut être nécessaire de remplacer l’unité. Communiquez avec votre fournisseur.</td>
</tr>
<tr>
<td>F22</td>
<td>RÉGLAGE INVALIDE DU COMMUTATEUR DIP</td>
<td>Aucun commutateur DIP réglé ou plus d’un (1) commutateur DIP réglé pour la taille du moteur.</td>
<td>Vérifiez les réglages du commutateur DIP.</td>
</tr>
<tr>
<td>F23</td>
<td>RÉGLAGE INVALIDE DU COMMUTATEUR DIP</td>
<td>Aucun commutateur DIP réglé ou plus d’un (1) commutateur DIP réglé pour la taille de la pompe.</td>
<td>Vérifiez les réglages du commutateur DIP.</td>
</tr>
<tr>
<td>F24</td>
<td>RÉGLAGE INVALIDE DU COMMUTATEUR DIP</td>
<td>Combinaison invalide de commutateurs DIP pour le type d’entraînement (mode SD ou MD), la puissance en hp du moteur ou celle de la pompe.</td>
<td>Vérifiez les réglages du commutateur DIP.</td>
</tr>
</tbody>
</table>
Dépannage du SubDrive

Guide de référence rapide

<table>
<thead>
<tr>
<th>Condition</th>
<th>Voyants Indicateurs</th>
<th>Cause Possible</th>
<th>Mesure Corrective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aucune eau</td>
<td></td>
<td>- Aucune tension d'alimentation n’est présente
 - Câble de carte de l’écran déconnecté ou lâche</td>
<td>- Vérifiez la connexion du câble entre la carte de commande principale et la carte de l’écran
 - Si une tension appropriée est présente, remplacez l’entraînement</td>
</tr>
<tr>
<td>VERT « --- » À L’ÉCRAN</td>
<td>Circuit du capteur de pression</td>
<td>- Vérifiez que la pression d’eau est inférieure au point de réglage du système
 - Si l’onglet détachable du Panneau d’entrée de pression est retiré, assurez-vous que l’appareil auxiliaire est connecté et que le circuit est fermé
 - Si l’onglet détachable du Panneau d’entrée de pression est retiré et qu’aucun appareil auxiliaire n’est utilisé, établissez manuellement un court-circuit des connexions « AUX IN »
 - Liez les fils ensemble au capteur de pression; si la pompe démarre, remplacez le capteur
 - Si la pompe ne démarre pas, vérifiez la connexion du capteur au Panneau d’entrée de pression; si elle est lâche, réparez-la
 - Si la pompe ne démarre pas, liez la connexion du capteur au Panneau d’entrée de pression; si la pompe démarre, remplacez le fil
 - Si la pompe ne démarre pas alors que la connexion du Panneau d’entrée de pression du capteur est liée, remplacez le Panneau d’entrée de pression
 - Si la pompe ne démarre pas avec un nouveau Panneau d’entrée de pression, remplacez l’entraînement</td>
<td></td>
</tr>
<tr>
<td>Rouge Code de défaillance à l’écran</td>
<td>Défaillance détectée</td>
<td>- Consultez la description du code de défaillance et les mesures correctives</td>
<td></td>
</tr>
<tr>
<td>VERT FRÉQUENCE DU MOTEUR À L’ÉCRAN</td>
<td>- L’entraînement et le moteur sont en fonction
 - Connexion de câble ou interrupteur lâches
 - Réglages incorrects de moteur ou de pompe
 - Le moteur tourne peut-être à l’envers
 - Eau engloutie à l’aspiration de pompe</td>
<td>- Vérifiez le réglage de fréquence maximale. Si ce réglage a été réduit sous la valeur maximale, augmentez-le
 - Vérifiez les valeurs nominales du moteur / de la pompe et faites-les correspondre aux réglages de moteur/pompe sur l’entraînement (commutateur DIP ou Wi-Fi)
 - Vérifiez les connexions du moteur
 - Maximum de fréquence, intensité faible, vérifiez la présence d’une soupape fermée ou d’un clapet anti-retour coincé
 - Maximum de fréquence, intensité élevée, vérifiez la présence d’un trou dans le tuyau
 - Maximum de fréquence, intensité erratique, vérifiez le fonctionnement de la pompe, turbines trainantes
 - Cela n’est pas un problème avec l’entraînement
 - Vérifiez toutes les connexions
 - Débranchez l’alimentation électrique et laissez le puits récupérer pendant un court moment, puis essayez à nouveau</td>
<td></td>
</tr>
<tr>
<td>Fluctuations de pression (mauvaise régulation)</td>
<td></td>
<td>- Emplacement et réglage du capteur de pression
 - Emplacement de la jauge de pression
 - Précharge et taille du réservoir pressurisé
 - Fuite dans le système
 - Air aspiré dans la prise de pompe (absence de submersion)</td>
<td>- Corrigez l’emplacement et la pression le cas échéant
 - Le réservoir peut être trop petit pour le débit du système
 - Cela n’est pas un problème avec l’entraînement
 - Débranchez l’alimentation électrique et vérifiez la jauge de pression pour repérer une baisse de pression
 - Placez plus profondément dans le puits ou le réservoir; installez un manchon de débit avec un joint étanche à l’air autour de la colonne descendante et du câble
 - Si la fluctuation ne se produit que sur les embranchements avant le capteur, activez la caractéristique de débit constant
 - Modifiez la configuration de la taille du reservoir</td>
</tr>
<tr>
<td>Aucun arrêt alors que l’unité est en fonction</td>
<td></td>
<td>- Emplacement et réglage du capteur de pression
 - Pression de précharge du réservoir
 - Dommage à la turbine
 - Système qui fuit
 - Taille inappropriée (la pompe ne parvient pas à générer une charge hydraulique suffisante)</td>
<td>- Vérifiez la fréquence à de faibles débits; le réglage de pression peut être trop près de la charge hydraulique maximale de la pompe
 - Vérifiez la précharge à 70 % si la taille du réservoir est supérieure au minimum, augmentez la précharge (jusqu’à 85 %)
 - Vérifiez que le système peut générer et maintenir la pression
 - Activer le dispositif d’augmentation de pression usuel et/ou agressif
 - Augmenter la fréquence minimale</td>
</tr>
<tr>
<td>Fonctionne, mais se déclenche</td>
<td></td>
<td>- Vérifiez le code de défaillance et consultez la mesure corrective</td>
<td>- Consultez la description du code de défaillance et les mesures correctives sur le côté opposé</td>
</tr>
<tr>
<td>Condition</td>
<td>Voyants</td>
<td>Indicateurs</td>
<td>Cause Possible</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Dépassement du moteur à l'écran</td>
<td>Voyant FE Connect éteint</td>
<td>Temporisation de Wi-Fi expirée</td>
<td>Si plus d'une (1) heure s'est écoulée depuis la dernière déconnexion du Wi-Fi, redémarrez le SubDrive.</td>
</tr>
<tr>
<td>Bruit audible</td>
<td>Voyant FE Connect illuminé sans clignoter</td>
<td>Tente de se connecter au mauvais entraînement</td>
<td>Activer le dispositif d'augmentation de pression usuel et/ou agressif.</td>
</tr>
<tr>
<td>Présentation de Wi-Fi expirée</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dommage à la turbine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Système qui fuit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taille inappropriée (la pompe ne parvient pas à générer une charge hydraulique suffisante)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activer le dispositif d'augmentation de pression usuel et/ou agressif.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augmenter la fréquence minimale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Véritable (le système reste fonctionnel)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Véritable (le système reste fonctionnel)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contrôler le panneau de pression.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faible pression</td>
<td>Véritable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pression de précharge du réservoir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vérifier la précharge à 70% si la taille du réservoir est supérieure au minimum, augmentez la précharge.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluctuations de pression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vérifier la fréquence au débit maximal, vérifier la pression maximale.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pression de précharge du réservoir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vérifier la précharge à 70% si la taille du réservoir est supérieure au minimum, augmentez la précharge.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluctuations de pression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vérifier la fréquence au débit maximal, vérifier la pression maximale.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pression de précharge du réservoir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vérifier la précharge à 70% si la taille du réservoir est supérieure au minimum, augmentez la précharge.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluctuations de pression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vérifier la fréquence au débit maximal, vérifier la pression maximale.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pression de précharge du réservoir</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vérifier la précharge à 70% si la taille du réservoir est supérieure au minimum, augmentez la précharge.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluctuations de pression</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GARANTIE LIMITÉE*

CETTE GARANTIE ÉNONCE LES SEULES OBLIGATIONS DE L'ENTREPRISE ET LES RECOURS EXCLUSIFS DE L'ACHETEUR EN CAS DE PRODUIT DÉFECTUEUX.

Franklin Electric Company, Inc. et ses filiales (ci-après « l'Entreprise ») garantit que les produits accompagnés de cette garantie sont exempts de défauts quant aux matériaux ou à la main-d’œuvre. Elle a le droit exclusif de choisir de réparer ou de remplacer le matériel, les pièces ou les composants défectueux.

L'acheteur doit retourner le produit à un point de distribution Franklin Electric autorisé pour examen. Si le retour est effectué au point d'achat, la couverture de la garantie ne sera prise en considération que si le lieu de vente en question est un distributeur Franklin Electric autorisé au moment de la réclamation. Sous réserve des conditions générales énoncées ci-dessous, l'Entreprise s'engage à réparer ou à remplacer toute partie du produit retourné par l'acheteur qui s’avère défectueuse en raison des matériaux ou de la main-d’œuvre provenant de l’Entreprise.

L'Entreprise n’envisagera l’application de la garantie que dans les 12 mois suivant la date d’installation du produit ou dans les 24 mois suivant sa fabrication, selon la première éventualité.

L'Entreprise ne pourra EN AUCUN CAS être tenue responsable du coût de la main-d’œuvre ou d'autres frais engagés par un client pour retirer ou fixer un produit, ou quelconque pièce ou composant qui le constitue.

L'Entreprise se réserve le droit de modifier ou d'améliorer ses produits ou toute partie de ceux-ci sans être obligée de fournir une telle modification ou amélioration aux produits déjà vendus.

La présente garantie sera immédiatement annulée si l'une des conditions suivantes est constatée :

1. Le produit est utilisé à des fins autres que celles pour lesquelles il a été conçu et fabriqué;
2. Le produit n'a pas été installé conformément aux codes et aux règlements applicables et aux bonnes pratiques commerciales;
3. Le produit n'a pas été installé par un entrepreneur certifié par Franklin;
4. Le produit a été endommagé à la suite d'une négligence, d'un abus, d'un accident, d'une mauvaise application, de vandalisme, d'une altération, d'une installation, d'un fonctionnement, d'une maintenance ou d'un entreposage inapproprié ou d'un dépassement des maximaux recommandés dans les instructions du produit.

NI LE VENDEUR, NI L'ENTREPRISE NE POURRONT ÊTRE TENUS RESPONSABLES DES BLESSURES, DES PERTES OU DES DOMMAGES DIRECTS, ACCESSOIRES OU INDIRECTS (Y COMPRIS, SANS S'Y LIMITER, LES DOMMAGES INDIRECTS RELATIFS À UN MANQUE À GAGNER, À UNE PErTE DE VENTES, À DES BLESSURES CORPORELLES, À DES DOMMAGES MATÉRIELS OU À TOUTE AUTRE PErTE ACCESSOIRE OU INDIRECTE) DÉCOULANT DE L'UTILISATION DU PRODUIT OU DE L'INCAPACITÉ DE L'EMPLOYEUR, ET L'ACHETEUR CONVIENT QU'AUCUN AUTRE RECOURS NE SERA POSSIBLE.

LA GARANTIE ET LE RECOURS DÉCRITS AUX PRÉSENTES SONT EXCLUSIFS ET ONT PRÉSÉANCE SUR TOUTE AUTRE GARANTIE OU TOUT AUTRE RECOURS EXPLICITE OU IMPLICITE. LES AUTRES GARANTIES ET RECOURS SONT AINSI EXPRESSÉMENT EXCLUS, Y COMPRIS, MAIS SANS S’Y LIMITER, TOUTE GARANTIE IMPLICITE DE QUALITÉ MARCHANDE OU DE CONFORMITÉ À UN USAGE PARTICULIER. LA DURÉE DE LA GARANTIE OU DU RECOURS APPLICABLE À UN PRODUIT SE LIMITE AUX PÉRIODES DE GARANTIE EXPLICITEMENT INDiquéES CI-DESSUS.

NON-RESPONSABILITÉ : Toute affirmation verbale à propos du produit effectuée par le vendeur, l'Entreprise, les représentants ou d'autres parties ne constitue pas une garantie, ne doit pas être interprétée comme telle par l'acheteur et ne fait pas partie du contrat de vente. Les seules obligations du vendeur et de l'Entreprise et les seuls recours de l'acheteur seront le remplacement ou la réparation par l'Entreprise du produit, comme décrit ci-dessus. Avant l’utilisation, l’utilisateur devra déterminer l’adéquation du produit avec l’usage auquel il est destiné; et l’utilisateur assume toutes les responsabilités et tous les risques liés à ce choix.

Certains États et pays n’autorisent pas l’exclusion ou la limitation de la durée d’une garantie implicite ou l’exclusion ou la limitation de dommages accessoires ou indirects, de sorte que l’exclusion ou les limitations énoncées ci-dessus peuvent ne pas s’appliquer à vous. Cette garantie vous accorde des droits juridiques précis, et vous pouvez également disposer d’autres droits, lesquels varient selon l’État et le pays.

Franklin Electric peut, à sa seule discrétion, mettre à jour la présente garantie limitée de temps à autre. Toute information contradictoire concernant les procédures de garantie, que ce soit dans un manuel d’utilisation ou ailleurs, est remplacée par la présente par ce document. Néanmoins, toutes les références à une période, ou à la durée d’une période de garantie, demeureront conformes à la garantie en vigueur au moment de l’achat.

*Communiquez avec la division de l'exportation de Franklin Electric Co., Inc. pour connaître la garantie internationale.
REMARQUES :
REMARQUES :
REMARQUES :
SubDrive15/20/30
MonoDrive, MonoDriveXT
NEMA 3R
Manual del propietario
Antes de empezar

⚠️ ADVERTENCIA

Puede ocurrir un choque eléctrico serio o fatal por no conectar el motor, el SubDrive/MonoDrive, las tuberías de metal y todos los otros objetos de metal en las cercanías del motor o cable al terminal de conexión a tierra de la fuente de alimentación usando un cable que no sea más pequeño que los cables del motor. Para reducir el riesgo de descargas eléctricas, desconecte la alimentación eléctrica antes de trabajar en el sistema de SubDrive/MonoDrive o cerca de él. LOS CAPACITORES DENTRO DEL CONTROLADOR DE SUBDRIVE/MONODRIVE PUEDEN MANTENER UN VOLTAJE LETAL INCLUSO DESPUÉS DE HABER SIDO DESCONECTADOS.

DEJE TRANSCURRIR 5 MINUTOS PARA QUE SE DESCARGUE EL VOLTAJE INTERNO PELIGROSO ANTES DE SACAR LA CUBIERTA DEL SUBDRIVE/MONODRIVE.

No use el motor en áreas donde se practique natación.

⚠️ ATENCIÓN

Este equipo debe ser instalado por personal técnicamente calificado. El incumplimiento de las regulaciones locales y nacionales, así como de las recomendaciones de Franklin Electric, puede resultar en descargas eléctricas, riesgo de incendio, desempeño insatisfactorio o fallas en el equipo. Puede obtener la información para instalarlo de los fabricantes o distribuidores de la bomba, o llamando directamente a Franklin Electric a nuestra línea gratuita, 1-800-348-2420.

⚠️ PRECAUCIÓN

Use el SubDrive/MonoDrive únicamente con los motores sumergibles Franklin Electric de 4 pulgadas indicados en este manual (vea la Tabla 2 en la pág. 19). El uso de esta unidad con otro motor de Franklin Electric o con motores de otros fabricantes puede dañar tanto el motor como los componentes electrónicos. En aplicaciones donde la demanda de agua es crítica, deben estar disponibles un sensor de presión de repuesto y/o un sistema de respaldo si el variador falla y no funciona como debería.

⚠️ ADVERTENCIA

Este aparato no se destina para utilizarse por personas (incluyendo niños) cuyas capacidades físicas, sensoriales o mentales sean diferentes o estén reducidas, o carezcan de experiencia o conocimiento, a menos que dichas personas reciban una supervisión o capacitación para el funcionamiento del aparato por una persona responsable de su seguridad. Los niños deben supervisarse para asegurar que ellos no empleen los aparatos como juguete.

⚠️ ADVERTENCIA

Si el cordón de alimentación es dañado, éste debe ser reemplazado únicamente por personal calificado o el fabricante.
Declaración de cumplimiento

<table>
<thead>
<tr>
<th>No. de modelo</th>
<th>Descripción del modelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>587 020 5003</td>
<td>MonoDrive</td>
</tr>
<tr>
<td>587 020 5103</td>
<td>SubDrive15</td>
</tr>
<tr>
<td>587 020 5203</td>
<td>MonoDriveXT</td>
</tr>
<tr>
<td>587 020 5303</td>
<td>SubDrive20</td>
</tr>
<tr>
<td>587 020 5403</td>
<td>SubDrive30</td>
</tr>
</tbody>
</table>

INFORMACIÓN DE LA FUNDACIÓN NACIONAL DE SANIDAD

El(los) sensor(es) adjunto(s) de acero inoxidable han sido evaluados por Underwriters Laboratories Inc. y se determinó que cumplen con los requerimientos de bajos niveles de plomo descritos en NSF/ANSI 61 - Anexo G.

Archivo UL: MH18335

NOTA DE PROTECCIÓN DE SOBRECARGA DEL MOTOR:

Los componentes electrónicos del variador proporcionan protección de sobrecarga del motor al evitar que la corriente del motor exceda el Amperaje de factor de servicio (SFA) máximo. El variador no detecta la sobretemperatura del motor.

PROTECCIÓN DE CIRCUITOS DERIVADOS

La protección integrada de estado sólido contra cortocircuitos no proporciona protección a los circuitos derivados. La protección de los circuitos derivados debe proporcionarse de acuerdo con el Código Eléctrico Nacional y cualquier código local adicional o equivalente. El variador deberá protegerse únicamente por un fusible o disyuntor de tiempo inverso de 300V, máximo 300% de la corriente de carga total de salida del motor configurada según se indica en la sección de Fusible/disyuntor abajo.

MÓDULO wifi

El módulo wifi ha sido probado y cumple con la parte 15 de las disposiciones de la FCC. Estos límites están diseñados para proveer protección razonable contra interferencias dañinas. Este equipo genera, usa y puede radiar energía de radiofrecuencia por periodos limitados (aproximadamente 15 minutos) y, si el variador no está instalado y se usa de conformidad con las instrucciones, puede ocasionar interferencia dañina a las radiocomunicaciones. Sin embargo, no hay garantía de que no ocurrirá interferencia en una instalación en particular. Si este equipo ocasiona interferencia dañina a la recepción de radio o televisión, lo cual puede determinarse encendiendo y apagando el equipo, se recomienda al usuario a tratar de corregir la interferencia tomando una o más de las siguientes medidas:

- Reorientar o reubicar la antena receptora.
- Incrementar la separación entre el equipo y el receptor.
- Conectar el equipo a un contacto en un circuito diferente al que está conectado el receptor.
- Consultar al distribuidor o a un técnico experimentado en radio/televisión para obtener ayuda.
Especificaciones - MonoDrive/MonoDriveXT

<table>
<thead>
<tr>
<th></th>
<th>MonoDrive</th>
<th>MonoDriveXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. de modelo</td>
<td>NEMA 3R (interior/exterior)</td>
<td>587 020 5003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>587 020 5203</td>
</tr>
<tr>
<td>Entrada de</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alimentación eléctrica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltaje</td>
<td>208/230 VCA</td>
<td>208/230 VCA</td>
</tr>
<tr>
<td>Incorporación</td>
<td>Monofásico</td>
<td>Monofásico</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>60/50 Hz</td>
<td>60/50 Hz</td>
</tr>
<tr>
<td>Corriente (máxima)</td>
<td>11 A</td>
<td>16 A</td>
</tr>
<tr>
<td>Factor de potencia</td>
<td>– 0.95</td>
<td>– 0.95</td>
</tr>
<tr>
<td>**Potencia (descanso)*</td>
<td>4 W</td>
<td>5 W</td>
</tr>
<tr>
<td>Potencia (máxima)</td>
<td>2.5 kW</td>
<td>4.2 kW</td>
</tr>
<tr>
<td>Calibre(s) del cable</td>
<td>Consulte los códigos federales, estatales y locales para las instalaciones de circuitos derivados</td>
<td>Consulte los códigos federales, estatales y locales para las instalaciones de circuitos derivados</td>
</tr>
<tr>
<td>Salida al motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltaje</td>
<td>230 VCA</td>
<td>230 VCA</td>
</tr>
<tr>
<td>Eliminación</td>
<td>Monofásico, (3-cables)</td>
<td>Monofásico, (3-cables)</td>
</tr>
<tr>
<td>Rango de frecuencia</td>
<td>30-63 Hz</td>
<td>30-63 Hz</td>
</tr>
<tr>
<td>Corriente (máxima)</td>
<td>10.4 A</td>
<td>13.2 A</td>
</tr>
<tr>
<td>Calibre(s) del cable</td>
<td>Vea la pág. 18 para obtener información del disyuntor y el tamaño de los cables</td>
<td>Vea la pág. 18 para obtener información del disyuntor y el tamaño de los cables</td>
</tr>
<tr>
<td>Ajuste de la presión</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configurado de fábrica</td>
<td>50 psi (3.4 bar)</td>
<td>50 psi (3.4 bar)</td>
</tr>
<tr>
<td>Rango de ajuste</td>
<td>25-80 psi (1.7 - 5.5 bar)</td>
<td>25-80 psi (1.7 - 5.5 bar)</td>
</tr>
<tr>
<td>Condiciones de operación(A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatura</td>
<td>-13 °F a 122 °F (-25 °C a 50 °C)</td>
<td>-13 °F a 122 °F (-25 °C a 50 °C)</td>
</tr>
<tr>
<td>Humedad relativa</td>
<td>20-95%, sin condensación</td>
<td>20-95%, sin condensación</td>
</tr>
<tr>
<td>Tamaño del controlador(B) (aproximado)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEMA 3R</td>
<td>9-3/4" x 16-3/4" x 5-1/4" : 20 lb (25 x 42.5 x 13 cm) : (9 kg)</td>
<td>9-3/4" x 19-3/4" x 5-1/4" : 26 lb (25 x 50 x 13 cm) : (11.8 kg)</td>
</tr>
<tr>
<td>Bomba (60 Hz)</td>
<td>Bomba de 0.5 hp (0.37 kW) con motor serie 214505 Bomba de 0.75 hp (0.55 kW) con motor serie 214507 Bomba de 1.0 hp (0.75 kW) con motor serie 214508 Bomba de 1.5 hp (0.75 kW) con motor serie 214509 Bomba de 2.0 hp (0.75 kW) con motor serie 224301</td>
<td>Bomba de 1.0 hp (0.75 kW) con motor serie 214508 Bomba de 1.5 hp (1.1 kW) con motor serie 224300 Bomba de 2.0 hp (1.5 kW) con motor serie 224301</td>
</tr>
<tr>
<td>Motor FE</td>
<td>serie 214505 (0.5 hp, 0.37 kW) monofásico, 3 cables serie 214507 (0.75 hp, 0.55 kW) monofásico, 3 cables serie 214508 (1.0 hp, 0.75 kW) monofásico, 3 cables</td>
<td>serie 214508 (1.0 hp, 0.75 kW) monofásico, 3 cables serie 224300 (1.5 hp, 1.1 kW) monofásico, 3 cables serie 224301 (2.0 hp, 1.5 kW) monofásico, 3 cables</td>
</tr>
</tbody>
</table>

Notas:

(A) La temperatura de funcionamiento se indica para la potencia de salida máxima, cuando se instala como se indica en la sección de “Selección de la ubicación del variador” en la pág. 13-14.

(B) Vea la pág. 25-26 para obtener información detallada del montaje del variador.

* La potencia de descanso se define como la potencia de entrada usada por el variador cuando el variador no está operando el motor, el ventilador del variador está apagado y no hay comunicaciones activas. La potencia de descanso se incrementa en 1 W si está encendido el wifi.
Especificaciones – SubDrive15

<table>
<thead>
<tr>
<th>No. de modelo</th>
<th>NEMA 3R (interior/exterior) 587 020 5103</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrada de alimentación eléctrica</td>
<td></td>
</tr>
<tr>
<td>Voltaje</td>
<td>208/230 VCA</td>
</tr>
<tr>
<td>Incorporación</td>
<td>Monofásico</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>60/50 Hz</td>
</tr>
<tr>
<td>Corriente (máxima)</td>
<td>12 A</td>
</tr>
<tr>
<td>Factor de potencia</td>
<td>~ 0.95</td>
</tr>
<tr>
<td>Potencia (descanso)*</td>
<td>4 W</td>
</tr>
<tr>
<td>Potencia (máxima)</td>
<td>2.5 kW</td>
</tr>
<tr>
<td>Calibre(s) del cable</td>
<td>Consulte los códigos federales, estatales y locales para las instalaciones de circuitos derivados</td>
</tr>
</tbody>
</table>

Salida al motor	
Voltaje	230 VCA
Eliminación	Monofásico (3-cables) O Trifásico
Rango de frecuencia	bomba 30-77 Hz (3/4 hp, 0.55 kW)
	bomba 30-72 Hz (1 hp, 0.75 kW)
	bomba 30-60 Hz (1.5 hp, 1.1 kW)
	30-63 Hz (motores monofásicos)
Corriente (máxima)	5.9 A/fase
Calibre(s) del cable	Vea la pág. 18 para obtener información del disyuntor y el tamaño de los cables

Ajuste de la presión	
Configurado de fábrica	50 psi (3.4 bar)
Rango de ajuste	25-80 psi (1.7 y 5.5 bar)

| **Condiciones de operación**^(A) | Temperatura (a 230 VCA de entrada) -13 °F a 122 °F (-25 °C a 50 °C) |
| Humedad relativa | 20-95%, sin condensación |

| **Tamaño del controlador**^(B) (aproximado) | NEMA 3R 9-3/4" x 19-3/4" x 5-1/4" : 26 lb (25 x 50 x 13 cm) : (11.8 kg) |

Para uso con^(C)	
Bomba (60 Hz)	Bomba de 0.5 hp (0.37 kW) con motor serie 214505
	Bomba de 0.75 hp (0.55 kW) con motor serie 214507
	Bomba de 1.0 hp (0.75 kW) con motor serie 214508
	Bomba de 0.75 hp (0.55 kW), 1.0 hp (0.75 kW) o bomba de 1.5 hp (1.1 kW) con motor serie 234514
Motor FE	serie 214505 (0.5 hp, 0.37 kW) monofásico, 3 cables
	serie 214507 (0.75 hp, 0.55 kW) monofásico, 3 cables
	serie 214508 (1.0 hp, 0.75 kW) monofásico, 3 cables
	serie 234514 (1.5 hp, 1.1 kW) trifásico

Notas:
(A) La temperatura de funcionamiento se indica para la potencia de salida máxima, cuando se instala como se indica en la sección de “Selección de la ubicación del variador” en la pág. 13-14.
(B) Vea la pág. 22-26 para obtener información detallada del montaje del variador.
(C) Cuando un SubDrive15 se usa con un motor monofásico de 3 cables (ver selección del variador en la pág. 30-31), aplican las especificaciones de la bomba y del motor del MonoDrive en la página 5.
* La potencia de descanso se define como la potencia de entrada usada por el variador cuando el variador no está operando el motor, el ventilador del variador está apagado y no hay comunicaciones activas. La potencia de descanso se incrementa en 1 W si está encendido el wifi.
Especificaciones - SubDrive20

<table>
<thead>
<tr>
<th>No. de modelo</th>
<th>NEMA 3R (interior/exterior)</th>
<th>587 020 5303</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrada de alimentación eléctrica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltaje</td>
<td>208/230 VCA</td>
<td></td>
</tr>
<tr>
<td>Incorporación</td>
<td>Monofásico</td>
<td></td>
</tr>
<tr>
<td>Frecuencia</td>
<td>60/50 Hz</td>
<td></td>
</tr>
<tr>
<td>Corriente (máxima)</td>
<td>19 A</td>
<td></td>
</tr>
<tr>
<td>Factor de potencia</td>
<td>~ 0.95</td>
<td></td>
</tr>
<tr>
<td>Potencia (máxima)</td>
<td>4.2 kW</td>
<td></td>
</tr>
<tr>
<td>Potencia (descanso)*</td>
<td>5 W</td>
<td></td>
</tr>
<tr>
<td>Calibre(s) del cable</td>
<td>Consulte los códigos federales, estatales y locales para las instalaciones de circuitos derivados</td>
<td></td>
</tr>
<tr>
<td>Salida al motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltaje</td>
<td>230 VCA</td>
<td></td>
</tr>
<tr>
<td>Eliminación</td>
<td>Monofásico (3-cables) O Trifásico</td>
<td></td>
</tr>
<tr>
<td>Rango de frecuencia</td>
<td>Bomba 30-78 Hz (1 hp, 0.75 kW) Bomba 30-72 Hz (1,5 hp, 1.1 kW) Bomba 30-60 Hz (2 hp, 1.5 kW) 30-63 Hz (motores monofásicos)</td>
<td></td>
</tr>
<tr>
<td>Corriente (máxima)</td>
<td>8.1 A/fase</td>
<td></td>
</tr>
<tr>
<td>Calibre(s) del cable</td>
<td>Vea la pág. 18 para obtener información del disyuntor y el tamaño de los cables</td>
<td></td>
</tr>
<tr>
<td>Ajuste de la presión</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configurado de fábrica</td>
<td>50 psi (3.4 bar)</td>
<td></td>
</tr>
<tr>
<td>Rango de ajuste</td>
<td>25-80 psi (1.7 - 5.5 bar)</td>
<td></td>
</tr>
<tr>
<td>Condiciones de operación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatura (a 230 VCA de entrada)</td>
<td>-13 °F a 122 °F (-25 °C a 50 °C)</td>
<td></td>
</tr>
<tr>
<td>Humedad relativa (NEMA 3R)</td>
<td>20-95%, sin condensación</td>
<td></td>
</tr>
<tr>
<td>Tamaño del controlador</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(aproximado)</td>
<td>NEMA 3R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9-3/4" x 19-3/4" x 5-1/4" : 26 lb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(25 x 50 x 13 cm) : (11.8 kg)</td>
<td></td>
</tr>
<tr>
<td>Para uso con</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bomba (60 Hz)</td>
<td>Bomba de 1.0 hp (0.75 kW) con motor serie 214508 Bomba de 1.5 hp (1.1 kW) con motor serie 224300 Bomba de 2.0 hp (1.5 kW) con motor serie 224301</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bomba de 0.75 hp (0.55 kW), 1.0 hp (0.75 kW) o bomba de 1.5 hp (1.1 kW) con motor serie 234514 Bomba de 1.0 hp (0.75 kW), 1.5 hp (1.1 kW) o bomba de 2.0 hp (1.5 kW) con motor serie 234315</td>
<td></td>
</tr>
<tr>
<td>Motor FE</td>
<td>serie 214508 (1,0 hp, 0.75 kW) monofásico, 3 cables serie 224300 (1,5 hp, 1.1 kW) monofásico, 3 cables serie 224301 (2,0 hp, 1.5 kW) monofásico, 3 cables serie 234514 (1,5 hp, 1.1 kW) trifásico serie 234315 (2,0 hp, 1.5 kW) trifásico</td>
<td></td>
</tr>
</tbody>
</table>

Notas:

(A) La temperatura de funcionamiento se indica para la potencia de salida máxima, cuando se instala como se indica en la sección de “Selección de la ubicación del variador” en la pág. 13-14.
(B) Vea la pág. 25-26 para obtener información detallada del montaje del variador.
(C) Cuando un SubDrive20 se usa con un motor monofásico de 3 cables (ver selección del variador en la pág. 30-31), aplican las especificaciones de la bomba y del motor del MonoDrive en la página 5.
* La potencia de descanso se define como la potencia de entrada usada por el variador cuando el variador no está operando el motor, el ventilador del variador está apagado y no hay comunicaciones activas. La potencia de descanso se incrementa en 1 W si está encendido el wifi.
Especificaciones - SubDrive30

<table>
<thead>
<tr>
<th></th>
<th>SubDrive30</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. de modelo</td>
<td>NEMA 3R (interior/exterior) 587 020 5403</td>
</tr>
<tr>
<td>Entrada de alimentación eléctrica</td>
<td></td>
</tr>
<tr>
<td>Voltaje</td>
<td>208/230 VCA</td>
</tr>
<tr>
<td>Incorporación</td>
<td>Monofásico</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>60/50 Hz</td>
</tr>
<tr>
<td>Corriente (máxima)</td>
<td>23 A</td>
</tr>
<tr>
<td>Factor de potencia</td>
<td>~ 0.95</td>
</tr>
<tr>
<td>Potencia (descanso)*</td>
<td>5 W</td>
</tr>
<tr>
<td>Potencia (máxima)</td>
<td>4.2 kW</td>
</tr>
<tr>
<td>Calibre(s) del cable</td>
<td>Consulta los códigos federales, estatales y locales para las instalaciones de circuitos derivados</td>
</tr>
</tbody>
</table>

Salida al motor	
Voltaje	230 VCA
Eliminación	Monofásico (3-cables) O Trifásico
Rango de frecuencia	Bomba 30-78 Hz (1.5 hp, 1.1 kW)
	Bomba 30-70 Hz (2 hp, 1.5 kW)
	Bomba 30-60 Hz (3 hp, 2.2 kW)
	30-63 Hz (motores monofásicos)
Corriente (máxima)	10.9 A/fase
Calibre(s) del cable	Vea la pág. 18 para obtener información del disyuntor y el tamaño de los cables

Ajuste de la presión	
Configurado de fábrica	50 psi (3.4 bar)
Rango de ajuste	25-80 psi (1.7 - 5.5 bar)

Condiciones de operación(B)	
Temperatura (a 230 VCA de entrada)	-13 °F a 122 °F (-25 °C a 50 °C)
Humedad relativa	20-95%, sin condensación

Tamaño del controlador(B) (aproximado)	
NEMA 3R	9-3/4” x 19-3/4” x 5-1/4” : 28 lb
	(25 x 50 x 13 cm) : (11.8 kg)

Para uso con(C)	
Bomba (60 Hz)	Bomba de 1.0 hp (0.75 kW) con motor serie 214508
	Bomba de 1.5 hp (1.1 kW) con motor serie 224300
	Bomba de 2.0 hp (1.5 kW) con motor serie 224301
	Bomba de 0.75 hp (0.55 kW), 1.0 hp (0.75 kW) o bomba de 1.5 hp (1.1 kW) con motor serie 234514
	Bomba de 1.0 hp (0.75 kW), 1.5 hp (1.1 kW) o bomba de 2.0 hp (1.5 kW) con motor serie 234315
	Bomba de 1.5 hp (1.1 kW), 2.0 hp (1.5 kW) o bomba de 3.0 hp (2.2 kW) con motor serie 234316
Motor FE	serie 214508 (1.0 hp, 0.75 kW) monofásico, 3 cables
	serie 224300 (1.5 hp, 1.1 kW) monofásico, 3 cables
	serie 224301 (2.0 hp, 1.5 kW) monofásico, 3 cables
	serie 234514 (1.5 hp, 1.1 kW) trifásico
	serie 234315 (2.0 hp, 1.5 kW) trifásico
	serie 234316 (3.0 hp, 2.2 kW) trifásico

Notas:

(A) La temperatura de funcionamiento se indica para la potencia de salida máxima, cuando se instala como se indica en la sección de “Selección de la ubicación del variador” en la pág. 13-14.

(B) Vea la pág. 25-26 para obtener información detallada del montaje del variador.

(C) Cuando un SubDrive30 se usa con un motor monofásico de 3 cables (ver selección del variador en la pág. 30-31), aplican las especificaciones de la bomba y del motor del MonoDrive en la página 5.

* La potencia de descanso se define como la potencia de entrada usada por el variador cuando el variador no está operando el motor, el ventilador del variador está apagado y no hay comunicaciones activas. La potencia de descanso se incremente en 1 W si está encendido el wifi.
Descripción y características

Descripción
El SubDrive/MonoDrive de Franklin Electric es un controlador de frecuencia variable que usa componentes electrónicos avanzados para proteger el motor y mejorar las bombas estándar usadas en aplicaciones de sistemas hidráulicos residenciales y comerciales ligeros. Cuando se usa con los motores Franklin Electric (ver la Tabla 2 en la página 19), el SubDrive/MonoDrive proporciona una presión constante al eliminar los efectos de ciclos de presión asociados con los sistemas de pozo de agua convencionales.

Características y beneficios

Presión de agua constante
Los equipos SubDrive/MonoDrive de Franklin Electric permiten regular la presión de manera uniforme, mediante componentes electrónicos avanzados que impulsan un motor y una bomba estándar según la demanda de presión, indicada por un sensor de gran precisión, duradero, diseñado para trabajos pesados. Al ajustar la velocidad del motor y de la bomba, el SubDrive/MonoDrive puede ofrecer una presión constante de manera fiable, incluso si cambia la demanda del suministro de agua. Por ejemplo, si se presenta una demanda leve en el sistema, como un grifo de baño, el motor y la bomba funcionan a una velocidad relativamente baja. A medida que aumenta la demanda del sistema, al abrir más grifos o usar aparatos electrodomésticos, la velocidad aumenta para mantener la presión deseada en el sistema. Usando el sensor de presión suministrado, la presión del sistema puede configurarse en el rango de 25 – 80 psi (1.7 – 5.5 bar).

Tamaño reducido del tanque
Los sistemas convencionales usan tanques grandes para poder almacenar agua, mientras que el SubDrive utiliza un tanque más pequeño para mantener la presión constante. Ver la tabla 3 en la página 20 para obtener más información de los requerimientos del tamaño del tanque.

Tamaño reducido de la bomba
Los controladores SubDrive/MonoDrive adaptan la bomba a la aplicación al ajustar la velocidad de la bomba y el motor. En las aplicaciones del SubDrive, una bomba con una potencia de la mitad de la potencia del motor puede usarse cuando es dimensionado adecuadamente. Vea la información sobre tamaño de la bomba en la página 21.

Reducción de voltaje por sobrecalentamiento
El controlador SubDrive/MonoDrive está diseñado para un funcionamiento normal en temperaturas ambientas hasta de 125 °F (50 °C) mientras el voltaje de entrada se mantenga en 230 VCA. Bajo condiciones extremas de temperatura, el controlador reducirá la potencia de salida con el fin de evitar el daño potencial a la vez que trata de proveer de agua. La potencia total de la bomba es restaurada cuando la temperatura del controlador baja hasta un nivel seguro.
SubDrive/MonoDrive

Sensibilidad de baja carga ajustable
El controlador SubDrive/MonoDrive está configurado de fábrica para asegurar la detección de fallas de baja carga en una amplia variedad de aplicaciones de bombeo. En casos poco comunes (como con ciertas bombas en pozos poco profundos) este nivel de activación puede dar como resultado fallas falsas. Si la bomba se instala en un pozo poco profundo, active el controlador y observe cómo funciona el sistema. Cuando el regulador comience a regular la presión, verifique el funcionamiento a varias velocidades de flujo para cerciorarse de que la sensibilidad predeterminada no ocasione fallas falsas por baja carga. Vea la sección de Configuración básica en la página 29 para obtener más detalles del potenciómetro de baja carga.

Relé de operación del sistema
El SubDrive/MonoDrive está equipado con una salida regulada la cual se activa (el contacto normalmente abierto se cerrará) cuando el sistema está bombeando de manera activa. Se suministran ambos contactos, normalmente abierto (NOI) y normalmente cerrado (NC). Estos contactos son clasificados 5 A en 250 VCA/30 VDC para cargas de uso general, o 2 A en 250 VCA/30 VDC para cargas inductivas (es decir, el relé). No se recomienda usar esta función de relé para controlar sistemas críticos (dosificación química, etc.).

Arranque suave del motor
Normalmente, cuando hay una demanda de agua, el SubDrive/MonoDrive estará operando para mantener la presión del sistema con precisión. Cuando el SubDrive/MonoDrive detecta que se está usando el agua, el controlador siempre "aumenta en rampa" la velocidad del motor mientras incrementa el voltaje gradualmente, dando como resultado un motor más frío y una corriente de arranque más baja comparada con los sistemas convencionales de agua. En los casos donde la demanda de agua es pequeña, el sistema puede encenderse y apagarse a baja velocidad. Debido a la capacidad de arranque suave del controlador y del diseño robusto del sensor, esto no dañará el motor o el sensor de presión.

Corrección del factor de potencia
La corrección activa del factor de potencia (PFC) minimiza la entrada de la corriente RMS permitiendo al variador usar una onda de corriente sinusoidal de entrada más limpia. Esto permite una reducción en el tamaño del cable de la alimentación eléctrica de entrada cuando se compara a aplicaciones similares sin la corrección del factor de potencia, porque se usa menos corriente en promedio para el variador para una carga dada cuando se compara con los dispositivos con no PFC.

Aplicación móvil para conexión a wifi y FE
La conectividad a wifi se incluye en el dispositivo para permitir que se haga la conexión entre el variador y un solo dispositivo con wifi (teléfono inteligente, tableta, etc.). Esta conexión se puede usar para poder ajustar las configuraciones avanzadas, las características del variador y ver la historia de fallas cuando se usa la aplicación móvil FE Connect. Vea la sección de Configuración avanzada en la página 33 de este manual para obtener más detalles sobre las capacidades de la conexión wifi.

Desactivación por baja carga ajustable
La desactivación por baja carga determina por cuánto tiempo esperará el variador antes de intentar operar después de un evento de baja carga. El tiempo establecido es 5 minutos, pero el usuario lo puede ajustar mediante la interfaz de wifi desde 1 minuto hasta 48 horas.
Historia del diagnóstico de fallas del sistema

Adicionalmente a la regulación de la presión de la bomba y al control preciso de la operación del motor, el SubDrive/MonoDrive vigila constantemente el desempeño del sistema y puede detectar una variedad de condiciones anormales. En muchos casos, el controlador compensará, según sea necesario, para mantener la operación continua del sistema, sin embargo, si hay un riesgo alto de daño al equipo, el controlador protegerá al sistema y mostrará la condición de falla. Si es posible, el controlador tratará de volver a arrancar cuando la condición de falla se termine. Cada vez que se detecta una falla en el sistema, el variador registra la falla y el tiempo de operación que pasó cuando se detectó la falla. Se graban un máximo de 500 eventos y se pueden ver usando la conexión wifi.

Falla de conexión a tierra

El variador está equipado con protección de falla de conexión a tierra para la salida del motor. En caso de que se detecte una fuga de corriente hacia tierra en la salida del motor, el variador indicará una falla de conexión a tierra (código de falla F16). Para obtener más información, consulte la tabla de códigos de diagnóstico de fallas en la parte posterior de este manual.

Modos de choque ajustables

Usando la configuración avanzada (aplicación Connect de wifi y FE), se puede cambiar la configuración del modo de choque y del tamaño del tanque del variador. El modo de choque controla qué tan fuerte bombará el variador por un periodo muy corto de tiempo justo antes de intentar apagarse. El variador se envía con la configuración preestablecida que es compatible con la mayoría de las aplicaciones de SubDrive. Para las aplicaciones con tanques de presión grandes o solución de problemas desconectada, el modo de choque se puede modificar para ser más agresivo. El comportamiento del sistema debe vigilarse cuando se ajusten estas configuraciones para asegurar una operación apropiada.

Partes reemplazables

Ventilador de enfriamiento

En caso de un ventilador de enfriamiento falle y ocurran fallas de sobrecalentamiento del variador frecuentes (código de falla F7), el ventilador podrá ser reemplazado. Vea la sección de Accesorios para obtener más información de los juegos de reemplazo del ventilador NEMA 3R.

Tablero de presión de entrada

En caso de que un rayo cree un pico en el sensor de presión de entrada al variador, la tarjeta de entrada de presión puede dañarse haciendo que no opere el variador. En lugar de reemplazar el variador completo, se puede reemplazar la tarjeta de presión de entrada como intento de reparar el variador. Vea la sección de Accesorios para obtener más información acerca del juego de repuesto de la tarjeta de entrada del sensor de presión.
SubDrive/MonoDrive

En la caja

A. Unidad controladora
B. Sensor de presión y tapa
C. Herramienta de regulación del sensor
D. Cable del sensor
E. Guía de instalación
F. Accesorio para la liberación de presión

Cómo funciona

El equipo eléctrico SubDrive/MonoDrive está diseñado para ser parte de un sistema que consiste de solo cuatro (4) componentes:

A. Bomba estándar y motor Franklin Electric
B. Controlador SubDrive/MonoDrive
C. Tanque pequeño de presión (vea la Tabla 3 de la pág. 20)
D. Sensor de presión Franklin Electric (aprobado por NSF 61)
Pantalla del variador

Sistema inactivo
Cuando la unidad del SubDrive/MonoDrive tiene alimentación eléctrica y está inactiva (no está bombeando agua), la pantalla estará iluminada y se mostrará “- - -”.

Variador en operación
Cuando la unidad del SubDrive/MonoDrive está controlando el motor y la bomba, la pantalla estará iluminada y la frecuencia del motor/la bomba (en Hertz o ciclos por segundo) se mostrará en la pantalla.

Falla detectada
Cuando se detecta una condición de falla en el sistema, la pantalla del variador se iluminará en rojo y el código de falla será mostrado. Todos los códigos de falla comienzan con “F” seguidos de un número de uno o dos dígitos. Para obtener más información, consulte la tabla de códigos de diagnóstico de fallas en la parte posterior de este manual.

Ubicación del variador

El controlador del SubDrive/MonoDrive está diseñado para la operación a temperaturas ambientes de -13 °F a 122 °F (-25 °C a 50 °C) a una salida de 230 VCA. Las siguientes recomendaciones ayudarán a la selección de la ubicación apropiada para el controlador.

- Se recomienda una T para montar el tanque, el sensor de presión, el manómetro y la válvula de alivio en un ramal. Si no se usa la T del tanque, el sensor de presión se debe ubicar a 6 pies (1.8 metros) del tanque de presión para minimizar las fluctuaciones de presión. No debe haber codos entre el tanque y el sensor de presión.
- La unidad debe estar montada en una estructura de soporte resistente como una pared o un poste de soporte. Tome en cuenta el peso de la unidad.
- Los componentes electrónicos adentro del SubDrive/MonoDrive se enfrian con aire. Como resultado, debe haber al menos 6 pulgadas (15.24 cm) de separación, en cada lado, y debajo de la unidad, para dejar que fluya el aire.
- La ubicación de la montura debe tener acceso a una fuente de alimentación eléctrica de 230 VCA y al cableado sumergible del motor. Para evitar posible interferencia con otros electrodomésticos, consulte la sección de la ruta de cableado de este manual y observe todas las precauciones con respecto a la ruta del cableado eléctrico.
Consideraciones especiales para el uso al aire libre

El controlador es adecuado para uso al aire libre con una clasificación NEMA 3R; sin embargo, se deben tener en cuenta las siguientes consideraciones cuando se instale el controlador al aire libre:

- La unidad se DEBE instalar en posición vertical, el extremo del cableado orientado hacia abajo, y la cubierta debe estar asegurada apropiadamente (también es aplicable a las instalaciones interiores).
- El controlador se deberá montar sobre una superficie o una placa trasera que no sea más pequeña que las dimensiones del gabinete del controlador.
- Los gabinetes NEMA 3R son capaces de resistir la lluvia cayendo hacia abajo solamente. El controlador se debe proteger del agua aplicada con manguera o salpicada así como de las ráfagas de lluvia. Si no se hace así el controlador puede fallar.
- El controlador NO debe colocarse en un lugar donde le dé la luz del sol directamente o en otra ubicación sujeta a temperaturas extremas o humedad.
• Si el variador está instalado en áreas donde hay basuras y pequeños animales o insectos que puedan entrar al variador, se debe instalar un juego de filtros de aire. Vea la página de Accesorios para obtener la información de pedidos.

Tendido de los cables

Para asegurar la mejor protección contra la interferencia con otros dispositivos, tome las siguientes precauciones:

- Separe la entrada de la alimentación eléctrica y el cableado del motor al menos 8" (20.3 cm)
- NO coloque los cables de alimentación eléctrica de entrada y los cables del motor juntos. Sepárelos al menos 8" (20.3 cm)
- Cuando sea posible NO coloque la alimentación eléctrica de entrada del variador o los cables del motor en paralelo con el cableado de la casa.
- Evite colocar los cables de la casa en paralelo con los cables del motor.
Si es necesario instalar en paralelo, mantenga la alimentación eléctrica de entrada del variador y los cables del motor al menos a 8’ (20.3 cm) de distancia del otro cableado de la casa.
Conexión a tierra

Para asegurar la seguridad y el desempeño, cumpla los siguientes requerimientos para la conexión a tierra:

- Asegúrese de que una varilla apropiada de conexión a tierra de la empresa de servicios públicos está presente y conectada.

- Se debe conectar un cable de conexión a tierra de la alimentación eléctrica de entrada desde el panel de alimentación eléctrica al variador.

- Se debe conectar un cable de salida dedicado de conexión a tierra desde el variador al motor (los cables del motor y los de conexión a tierra deben atarse juntos).

- Evite múltiples rutas a tierra.
Tamaño del fusible/disyuntor y de los cables

El tamaño del fusible/disyuntor indicado y la longitud máxima permisible para las conexiones de los cables al SubDrive/MonoDrive se dan en las siguientes tablas:

Tabla 1: Clasificación por tamaños del disyuntor y longitudes máximas del cable de entrada (en pies)

<table>
<thead>
<tr>
<th>Familia del modelo</th>
<th>Amperes del fusible indicado/Disyuntor indicado</th>
<th>Voltaje de entrada nominal</th>
<th>Tamaños del cable de cobre AWG, aislante para 167 °F (75 °C) a menos que se especifique algo diferente</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>14 12 10 8 6 4 3 2 1 1/0 2/0</td>
</tr>
<tr>
<td>MonoDrive</td>
<td></td>
<td></td>
<td>80 125 205 315 500 790 980 1290 1635 - -</td>
</tr>
<tr>
<td></td>
<td>15 208</td>
<td></td>
<td>95 150 250 385 615 970 1200 1580 2000 - -</td>
</tr>
<tr>
<td>SubDrive15</td>
<td>15 208</td>
<td></td>
<td>70 110 185 280 450 710 880 1160 1465 - -</td>
</tr>
<tr>
<td></td>
<td>15 230</td>
<td></td>
<td>85 135 225 345 550 865 1075 1415 1795 - -</td>
</tr>
<tr>
<td>MonoDriveXT</td>
<td>20 208</td>
<td></td>
<td>- 85 140 220 345 550 680 895 1135 - -</td>
</tr>
<tr>
<td></td>
<td>20 230</td>
<td></td>
<td>- 105 175 265 425 670 835 1095 1390 - -</td>
</tr>
<tr>
<td>SubDrive20</td>
<td>20 208</td>
<td></td>
<td>- - - 115 180 285 450 555 730 925 - -</td>
</tr>
<tr>
<td></td>
<td>20 230</td>
<td></td>
<td>- - 85 140 220 345 550 680 895 1130 - -</td>
</tr>
<tr>
<td>SubDrive30</td>
<td>25 208</td>
<td></td>
<td>- - 95 145 235 370 460 605 765 - -</td>
</tr>
<tr>
<td></td>
<td>25 230</td>
<td></td>
<td>- - 115 180 285 455 560 740 935 - -</td>
</tr>
</tbody>
</table>

Los números resaltados denotan cable con aislamiento de 194 °F (90 °C) únicamente.

Use la tierra del panel de la entrada de servicio SOLAMENTE.

NO coloque los cables de tierra separados.

El cable a tierra del motor DEBE estar atado a los cables del motor.
Tabla 2: Máxima longitud del cable del motor (en pies)

<table>
<thead>
<tr>
<th>Modelo del controlador</th>
<th>Modelo del motor Franklin Electric</th>
<th>HP</th>
<th>Tamaño AWG (CAE) de los cables de cobre, aislamiento de 167 ºF (75 ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>SubDrive15</td>
<td>234 514 xxxx</td>
<td>1.5 (1.1 kW)</td>
<td>420</td>
</tr>
<tr>
<td>SubDrive20</td>
<td>234 315 xxxx</td>
<td>2.0 (1.5 kW)</td>
<td>320</td>
</tr>
<tr>
<td>SubDrive30</td>
<td>234 316 xxxx</td>
<td>3.0 (2.2 kW)</td>
<td>240</td>
</tr>
<tr>
<td>MonoDrive</td>
<td>214 505 xxxx</td>
<td>0.5 (0.37 kW)</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>214 507 xxxx</td>
<td>0.75 (0.55 kW)</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>214 508 xxxx</td>
<td>1.0 (0.75 kW)</td>
<td>250</td>
</tr>
<tr>
<td>MonoDriveXT</td>
<td>214 508 xxxx</td>
<td>1.0 (0.75 kW)</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>224 300 xxxx</td>
<td>1.5 (1.1 kW)</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>224 301 xxxx</td>
<td>2.0 (1.5 kW)</td>
<td>190</td>
</tr>
</tbody>
</table>

NOTA: 1 pie = 0.305 m

Se suministra una sección de cable de 10 pies (3.05 m) con el SubDrive/MonoDrive para conectar el sensor de presión.

NOTA:
- Las longitudes máximas permitidas de los cables son medidas entre el controlador y el motor.
- No se deben utilizar cables de aluminio con el SubDrive/MonoDrive.
- Todo el cableado debe estar de conformidad con los códigos del “National Electrical Code” y los códigos locales.
- Los amperes mínimos del disyuntor del MonoDrive pueden ser más bajos que las especificaciones del Manual AIM para los motores indicados debido a las características de arranque suave del controlador del MonoDrive.
- Los amperes mínimos del disyuntor del SubDrive pueden parecer sobrepasar las especificaciones del Manual AIM para los motores indicados debido a que los controladores del SubDrive se alimentan a partir de un servicio monofásico en lugar de uno trifásico.
- Nota de protección de sobrecarga del motor: Los componentes electrónicos del variador proporcionan protección de sobrecarga del motor al evitar que la corriente del motor exceda el Amperaje de factor de servicio (SFA) máximo. El variador no detecta el sobrecalentamiento del motor.

Tamaño del generador

El dimensionamiento básico del generador para el sistema eléctrico del SubDrive/MonoDrive Franklin es 1.5 veces los vatios máximos de entrada consumidos por el variador, redondeado al siguiente tamaño normal del generador.

Tamaños mínimos recomendados del generador:

MonoDrive
- 1/2 hp = 2000 Watts (2 kW)
- 3/4 hp = 3000 Watts (3 kW)
- 1 hp = 3500 Watts (3.5 kW)

MonoDriveXT
- 1.5 hp = 4000 Watts (4 kW)
- 2 hp = 5000 Watts (5 kW)

SubDrive15 = 3500 Watts (3.5 kW)
SubDrive20 = 5700 Watts (6 kW)
SubDrive30 = 7000 Watts (7 kW)

Nota: No se debe utilizar en un interruptor de circuito de fallos de conexión a tierra (GFIC). Si se usa un generador regulado externamente, verifique que el voltaje, los hertzios y la velocidad de descanso son apropiados para alimentar el variador.
Tamaño del tanque y la bomba

El SubDrive/MonoDrive sólo requiere un tanque de presión pequeño para mantener una presión constante. (Vea el tamaño recomendado del tanque en la tabla que sigue). Para bombas de 12 gpm (45.4 lpm) o superiores, se recomienda un tanque ligeramente más grande para una regulación óptima de la presión. El SubDrive/MonoDrive también puede usar un tanque existente de capacidad mucho mayor.

Tabla 3: Tamaño mínimo del tanque de presión (capacidad total)

<table>
<thead>
<tr>
<th>Clasificación del flujo de la bomba</th>
<th>Modelo del controlador</th>
<th>Tamaño mínimo del tanque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menos de 12 gpm (45.4 lpm)</td>
<td>SubDrive15 o MonoDrive</td>
<td>2 galones (7.6 litros)</td>
</tr>
<tr>
<td></td>
<td>SubDrive20</td>
<td>4 galones (15.1 litros)</td>
</tr>
<tr>
<td></td>
<td>SubDrive30 o MonoDriveXT</td>
<td>4 galones (15.1 litros)</td>
</tr>
<tr>
<td>12 gpm (45.4 lpm) y superior</td>
<td>SubDrive15 o MonoDrive</td>
<td>4 galones (15.1 litros)</td>
</tr>
<tr>
<td></td>
<td>SubDrive20</td>
<td>8 galones (30.3 litros)</td>
</tr>
<tr>
<td></td>
<td>SubDrive30 o MonoDriveXT</td>
<td>8 galones (30.3 litros)</td>
</tr>
</tbody>
</table>

El ajuste de carga previa del tanque de presión debe ser el 70% del ajuste del sensor de presión del sistema como se indica en la Tabla 4. Se debe seleccionar el diámetro mínimo de la tubería de suministro para que no exceda una velocidad máxima de 8 pies/s (2.4 m/s) (Vea la Tabla 5 abajo para obtener mayor información del diámetro mínimo de la tubería).

Tabla 4

<table>
<thead>
<tr>
<th>Guía de regulación de la presión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punto de ajuste del sensor de presión (PSI)</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>50 (valor de fábrica)</td>
</tr>
</tbody>
</table>

Tabla 5

<table>
<thead>
<tr>
<th>Velocidad máxima 8 pies/s (2.4 m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diámetro mínimo de la tubería</td>
</tr>
<tr>
<td>1/2"</td>
</tr>
<tr>
<td>3/4"</td>
</tr>
<tr>
<td>1"</td>
</tr>
<tr>
<td>1-1/4"</td>
</tr>
<tr>
<td>1-1/2"</td>
</tr>
<tr>
<td>2"</td>
</tr>
<tr>
<td>2-1/2"</td>
</tr>
</tbody>
</table>

ADVERTENCIA
Un sensor de presión con valores preestablecidos debe configurarse entre 25 y 80 psi (1.7 y 5.5 bar) únicamente.

El sensor de presión debe instalarse parado y en posición vertical con la tapa de goma instalada.

ADVERTENCIA
No instale el sensor de presión invertido. No se debe colocar en la luz directa del sol.

El ajuste de carga previa del tanque de presión debe ser el 70% del ajuste del sensor de presión del sistema (Tabla 4). Se debe seleccionar el diámetro mínimo de la tubería de suministro para que no exceda una velocidad máxima de 8 pies/s (2.4 m/s) (Tabla 5).
Tamaño y desempeño de la bomba

SubDrive15

El SubDrive15 se puede usar con bombas de 3/4 hp (0.55 kW) que estén montadas en motores trifásicos Franklin Electric de 1.5 hp (1.1 kW). En general, el SubDrive15 mejorará el desempeño de una bomba de 3/4 hp (0.55 kW) para un desempeño similar o superior al de la bomba convencional de 1.5 hp (1.1 kW) de la misma clasificación de flujo (serie de bomba).

Para elegir la bomba apropiada de 3/4 hp (0.55 kW), elija primero una curva de 1.5 hp (1.1 kW) que cumpla los requerimientos de cabeza y flujo de la aplicación. Use la bomba de 3/4 hp (0.55 kW) en la misma serie de bombas (clasificación del flujo). El SubDrive15 ajustará la velocidad de esta bomba para producir el desempeño de la curva de 1.5 hp (1.1 kW). En la gráfica de la derecha se muestra un EJEMPLO de lo anterior. Consulte la curva de la bomba que el fabricante suministre correspondiente a su aplicación específica.

El SubDrive15 también puede ajustarse para operar una bomba de 1.0 hp (0.75 kW) o 1.5 hp (1.1 kW) si se desea, pero bombas más grandes de todas formas producirán para la curva de 1.5 hp (1.1 kW) y solo podrán operarse con un motor de 1.5 hp (1.1 kW). Para operar una bomba de diferente tamaño, se debe posicionar un interruptor DIP para seleccionar la clasificación correcta de la bomba. De lo contrario, el SubDrive15 puede activar fallas erróneas.

Vea la sección de Configuración básica en este manual para obtener información del interruptor DIP y la configuración.

⚠️ ADVERTENCIA

El contacto con los componentes eléctricos internos puede producir descargas eléctricas graves o fatales.
NO trate, bajo ninguna circunstancia, de cambiar la configuración del interruptor DIP hasta haber cortado la alimentación eléctrica y dejado que pasen 5 minutos para que se disipe el voltaje interno. Para que el ajuste del interruptor DIP surta efecto, se debe cortar la alimentación eléctrica.
SubDrive20
El SubDrive20 se puede usar con bombas de 1.0 hp (0.75 kW) que estén montadas en motores trifásicos Franklin Electric de 2.0 hp (1.5 kW). En general, el SubDrive20 mejorará el desempeño de una bomba de 1.0 hp (0.75 kW) para un desempeño similar o superior al de la bomba convencional de 2.0 hp (1.5 kW) de la misma clasificación de flujo (serie de bomba).

Para elegir la bomba apropiada de 1.0 hp (0.75 kW), elija primero una curva de 2.0 hp (1.5 kW) que cumpla los requerimientos de cabeza y flujo de la aplicación. Use la bomba de 1.0 hp (0.75 kW) en la misma serie de bombas (clasificación del flujo). El SubDrive20 ajustará la velocidad de esta bomba para producir el desempeño de la curva de 2.0 hp (1.5 kW).

En la gráfica de la derecha se muestra un EJEMPLO. Consulte la curva de la bomba que el fabricante suministre correspondiente a su aplicación específica.

El SubDrive20 también puede ajustarse para operar una bomba de 1.5 hp (1.1 kW) o 2.0 hp (1.5 kW) si se desea, pero bombas más grandes de todas formas producirán para la curva de 2.0 hp (1.5 kW) y solo podrán operarse con un motor de 2.0 hp (1.5 kW). Para operar una bomba de diferente tamaño, se debe posicionar un interruptor DIP para seleccionar la clasificación correcta de la bomba. De lo contrario, el SubDrive20 puede activar fallas erróneas.

Vea la sección de Configuración básica en este manual para obtener información del interruptor DIP y la configuración.

⚠️ ADVERTENCIA
El contacto con los componentes eléctricos internos puede producir descargas eléctricas graves o fatales.
NO trate, bajo ninguna circunstancia, de cambiar la configuración del interruptor DIP hasta haber cortado la alimentación eléctrica y dejado que pasen 5 minutos para que se disipe el voltaje interno. Para que el ajuste del interruptor DIP surta efecto, se debe cortar la alimentación eléctrica.
SubDrive30
El SubDrive30 se puede usar con bombas de 1.5 hp (1.1 kW) que estén montadas en motores trifásicos Franklin Electric de 3.0 hp (2.2 kW). En general, el SubDrive30 mejorará el desempeño de una bomba de 1.5 hp (1.1 kW) para un desempeño similar o superior al de la bomba convencional de 3.0 hp (2.2 kW) de la misma clasificación de flujo (serie de bomba).

Para elegir la bomba apropiada de 1.5 hp (1.1 kW), elija primero una curva de 3.0 hp (2.2 kW) que cumpla los requerimientos de cabeza y flujo de la aplicación. Use la bomba de 1.5 hp (1.1 kW) en la misma serie de bombas (clasificación del flujo). El SubDrive30 ajustará la velocidad de esta bomba para producir el desempeño de la curva de 3.0 hp (2.2 kW). En la gráfica de la derecha se muestra un EJEMPLO. Consulte la curva de la bomba que el fabricante suministre correspondiente a su aplicación específica.

El SubDrive30 también puede ajustarse para operar una bomba de 2.0 hp (1.5 kW) o 3.0 hp (2.2 kW) si se desea, pero bombas más grandes de todas formas producirán para la curva de 3.0 hp (2.2 kW) y solo podrán operarse con un motor de 3.0 hp (2.2 kW). Para operar una bomba de diferente tamaño, se debe posicionar un interruptor DIP para seleccionar la clasificación correcta de la bomba. De lo contrario, el SubDrive30 puede activar fallas erróneas.

Vea la sección de Configuración básica en este manual para obtener información del interruptor DIP y la configuración.

ADVERTENCIA
El contacto con los componentes eléctricos internos puede producir descargas eléctricas graves o fatales.
NO trate, bajo ninguna circunstancia, de cambiar la configuración del interruptor DIP hasta haber cortado la alimentación eléctrica y dejado que pasen 5 minutos para que se disipe el voltaje interno. Para que el ajuste del interruptor DIP surta efecto, se debe cortar la alimentación eléctrica.
MonoDrive
El MonoDrive está diseñado para convertir un sistema de bomba tradicional de 1/2 hp (0.37 kW), 3/4 hp (0.55 kW) o 1.0 hp (0.75 kW) en un sistema de presión constante y velocidad variable reemplazando simplemente la caja de control de 3 cables y el interruptor de presión. La salida máxima de la bomba usando el MonoDrive es similar al desempeño que se logra usando una caja de control convencional. Por lo tanto, los criterios de selección de bombas son los mismos que si se utilizara una caja de control. Consulte la documentación del fabricante de la bomba para obtener detalles sobre el procedimiento de selección de bombas.

Si una bomba y un motor como los descritos anteriormente ya están instalados en el sistema y los componentes del sistema de pozo están en buenas condiciones de funcionamiento, no se requerirán actualizaciones del sistema. Sin embargo, si la bomba y el motor existentes no han sido escogidos correctamente, o si los componentes del sistema de pozo no están en buenas condiciones de funcionamiento, el MonoDrive no se puede utilizar para corregir el problema o prolongar la vida útil de componentes usados.

Si no se equipara la configuración a la clasificación de la bomba y el motor se pueden activar fallas erróneas. Vea la sección de Configuración básica en este manual para obtener información del interruptor DIP y la configuración.

MonoDriveXT
El MonoDriveXT está diseñado para convertir un sistema de bomba tradicional de 1.0 hp (0.75 kW), 1.5 hp (1.1 kW) o 2.0 hp (1.5 kW) en un sistema de presión constante y velocidad variable reemplazando simplemente la caja de control de 3 cables y el interruptor de presión. La salida máxima de la bomba usando el MonoDriveXT es similar al desempeño que se logra usando una caja de control convencional. Por lo tanto, los criterios de selección de bombas son los mismos que si se utilizara una caja de control. Consulte la documentación del fabricante de la bomba para obtener detalles sobre el procedimiento de selección de bombas.

Si una bomba y un motor como los descritos anteriormente ya están instalados en el sistema y los componentes del sistema de pozo están en buenas condiciones de funcionamiento, no se requerirán actualizaciones del sistema. Sin embargo, si la bomba y el motor existentes no han sido escogidos correctamente, o si los componentes del sistema de pozo no están en buenas condiciones de funcionamiento, el MonoDriveXT no se puede utilizar para corregir el problema o prolongar la vida útil de componentes usados.

Si no se equipara la configuración a la clasificación de la bomba y el motor se pueden activar fallas erróneas. Vea la sección de Configuración básica en este manual para obtener información del interruptor DIP y la configuración.
Procedimiento de instalación
Montaje del variador
La unidad SubDrive/MonoDrive se deberá montar sobre una superficie o una placa trasera que no sea más pequeña que las dimensiones del controlador para poder mantener la clasificación NEMA 3R. El controlador debe montarse al menos a 18" (45.7 cm) por encima del suelo.

El controlador se monta usando la pestaña para colgar en la parte superior del gabinete, así como los dos (2) agujeros para montaje adicionales en la parte trasera del controlador. Las tres (3) ubicaciones de los agujeros deben usarse para asegurar que el controlador está montado de forma segura a la placa trasera o a la pared.
<table>
<thead>
<tr>
<th>MODELO</th>
<th>“A”</th>
<th>“B”</th>
<th>“C”</th>
<th>“D”</th>
</tr>
</thead>
<tbody>
<tr>
<td>SubDrive15, MonoDrive</td>
<td>464.2</td>
<td>355.2</td>
<td>454.7</td>
<td>427.4</td>
</tr>
<tr>
<td></td>
<td>[18.28]</td>
<td>[13.98]</td>
<td>[17.90]</td>
<td>[16.83]</td>
</tr>
<tr>
<td>SubDrive20, SubDrive30, MonoDriveXT</td>
<td>539.4</td>
<td>430.4</td>
<td>529.9</td>
<td>502.6</td>
</tr>
<tr>
<td></td>
<td>[21.24]</td>
<td>[16.94]</td>
<td>[20.86]</td>
<td>[19.79]</td>
</tr>
</tbody>
</table>
Cableado del variador

ADVERTENCIA

Puede ocurrir un choque eléctrico serio o fatal como resultado de conectar de forma incorrecta el motor a la terminal de tierra, el controlador del SubDrive/MonoDrive, tuberías metálicas u otro material metálico cercano al motor. Para reducir el riesgo de descargas eléctricas, desconecte la alimentación eléctrica antes de trabajar en el sistema hidráulico o en sus alrededores.

No use el motor en áreas donde se practique natación.

1. Verifique que la alimentación eléctrica se ha cortado en el disyuntor principal.

2. Verifique que el circuito derivado dedicado al SubDrive/MonoDrive esté equipado con un disyuntor de tamaño apropiado. (Vea la Tabla 1, pág. 18 para obtener el tamaño mínimo del disyuntor.)

3. Use conectores de alivio de presión o tuberías apropiados. Vea abajo los tamaños de los agujeros de conducto y orificios ciegos.

4. Retire la tapa del SubDrive/MonoDrive.

5. Haga pasar los conductores del motor por la abertura en el lado derecho de la parte inferior de la unidad y conéctelos en las posiciones del bloque de terminales marcadas (Cable de tierra de color verde), rojo, amarillo y negro.
6. Haga pasar los terminales de 230 VCA por la abertura más grande en el lado izquierdo de la parte inferior del controlador SubDrive/MonoDrive y conéctelos a los terminales marcados como L1, L2 y \(\frac{1}{2} \).

7. Para los cables del sensor de presión, use la abertura más pequeña de la parte inferior de la unidad SubDrive/MonoDrive a la derecha de los cables de alimentación de entrada. Conecte los cables rojo y negro a los terminales del bloque de terminales en la tarjeta de presión de entrada marcado como “sensor de presión” (intercambiable) con un destornillador pequeño (suministrado). Gire la conexión como se muestra en la figura a la derecha.

Nota: La tarjeta de presión de entrada tiene dos (2) terminales nombradas “AUX IN” que pueden usarse para proporcionar un control auxiliar para el variador. Esta conexión está en serie con la señal de entrada del sensor de presión y es una conexión no electrificada. El dispositivo conectado a esta terminal debe ser una conexión cerrada o en cortocircuito cuando se desea que el variador bombee agua (si la presión del sistema está por debajo del punto establecido de presión del sensor de presión). Si el “AUX IN” es un circuito abierto, el variador permanecerá en modo de descanso sin importar la presión del sistema.

Para usar conexiones “AUX IN” se debe eliminar la pestaña de desacoplamiento en la esquina inferior derecha de la tarjeta de presión de entrada. Si la pestaña de desacoplamiento no se quita, las conexiones “AUX IN” siempre estarán en cortocircuito. Si se quita la pestaña de desacoplamiento y las terminales “AUX IN” no se usan para un dispositivo auxiliar, las conexiones “AUX IN” deben ponerse en cortocircuito manualmente.

Vea la figura a la derecha para la ubicación de esta pestaña. La tarjeta de presión de entrada debe quitarse del variador antes de abrir la pestaña de desacoplamiento para evitar daños al variador.
Nota: Con el controlador se suministra un tramo de cable de 10 pies (3 m) para el sensor de presión, pero se puede usar un cable 22 AWG similar para distancias hasta de 100 pies (30 m) del sensor de presión. Puede solicitar un tramo de cable de 100 pies (30 m) para el sensor de presión al distribuidor local de Franklin Electric. Se debe usar cable de baja capacidad si el sensor de presión se conecta con un cable que no fue suministrado por Franklin Electric. Las longitudes de cable mayores de 100 pies (30 metros) no se deben usar ya que pueden ocasionar que el variador opere de forma incorrecta. (Vea la sección de Accesorios en la página 35 para obtener más detalles).

8. Verifique que la unidad del SubDrive/MonoDrive esté debidamente configurada para el caballaje del motor y de la bomba que se va a usar. (Vea la sección de Tamaño de la bomba en la página 24 para obtener información sobre la configuración del variador).

9. Vuelva a instalar la cubierta. Apriete el tornillo a 10 pulg-lb (1.1 Nm).

10. Conecte el otro extremo del cable del sensor de presión, con los dos terminales planos, al sensor de presión. Las conexiones son intercambiables.

11. Ajuste la carga previa del tanque de presión al 70% del valor deseado de presión del agua. Para verificar la carga previa del tanque, libere la presión del sistema de agua abriendo un grifo con el variador apagado. Vea la Tabla 4 en la página 20.

Mida la carga previa del tanque con un manómetro en la válvula de llenado y haga los ajustes necesarios.

12. El sensor de presión transmite la presión del sistema al controlador del SubDrive/ MonoDrive. El sensor viene ajustado de fábrica a 50 psi (3.4 bar), pero el instalador lo puede reajustar mediante el siguiente procedimiento:

 a. Retire la tapa de goma del extremo.

 b. Use la llave Allen de 7/32" (suministrada) para girar el tornillo de ajuste en sentido de las manecillas del reloj para aumentar la presión, y en sentido contrario a las manecillas del reloj para reducirla. El rango de ajuste va de 25 a 80 psi (1.7 - 5.5 bar). Nota: 1/4 de vuelta = 3 psi (0.2 bar) aproximadamente.

 c. Vuelva a colocar la tapa de goma del extremo.

 d. Cubra los terminales del sensor de presión con la tapa de goma suministrada (figura X). No coloque la tapa bajo la luz directa del sol.
SubDrive/MonoDrive

PRECAUCIÓN
Cuando incremente la presión, no exceda el tope mecánico en el sensor de presión u 80 psi (5.5 bar). El sensor de presión puede dañarse.

NOTA: Verifique que el sistema esté debidamente conectado a tierra por todo el trayecto hasta el panel del servicio de entrada. Una mala conexión a tierra puede hacer que se pierda la protección contra picos de voltaje y ocasionar interferencia.

Configuración del variador

ADVERTENCIA
El contacto con los componentes eléctricos internos puede producir descargas eléctricas graves o fatales.
NO trate, bajo ninguna circunstancia, de cambiar la configuración del interruptor DIP hasta haber cortado la alimentación eléctrica y dejado que pasen 5 minutos para que se disipe el voltaje interno. Para que el ajuste del interruptor DIP surta efecto, se debe cortar la alimentación eléctrica.

Configuración básica (interruptores DIP)
Para una configuración básica, DIP SW1 Posición 1 (interruptor de conexión FE) debe estar en posición “APAGADO” (abajo) para que se reconozcan el interruptor DIP y la configuración del potenciómetro de baja carga.

Selección del variador
Los SubDrives tienen la capacidad de desempeñarse como MonoDrives cuando es necesario (El SubDrive15 puede configurarse como un MonoDrive. El SubDrive20 y el SubDrive30 pueden configurarse como un MonoDriveST). Si desea operar un motor monofásico con una unidad de SubDrive, asegúrese que el DIP SW1 Posición 2 está en posición de “ENCENDIDO” (arriba). Esto se indica con “MD” impreso arriba de DIP SW1 Posición 2 en el escudo negro. Si usa un SubDrive con un motor trifásico, asegúrese que el DIP SW1 Posición 2 está en posición de “APAGADO” (abajo), indicado con “SD” impreso abajo de DIP SW1 Posición 2 en el escudo negro (esta es la configuración predeterminada para las unidades del SubDrive).

Nota: Cuando opere un SubDrive como un MonoDrive, las especificaciones de la bomba y del motor del MonoDrive en la Página 5 son aplicables.
Tamaño del motor/bomba

El SubDrive/MonoDrive se puede configurar para operar configurando solo dos (2) interruptores DIP, uno (1) para el tamaño del motor y uno (2) para el tamaño de la bomba. Los interruptores DIP están localizados en la parte superior de la tarjeta de interfaz de usuario como se muestra en la figura abajo.

Nota: Cuando opere un SubDrive como un MonoDrive, las especificaciones de la bomba y del motor del MonoDrive en la Página 5 son aplicables.

![Diagrama de configuración](image)

Selecciona el interruptor DIP uno (1) del SW2 que corresponde al caballaje del motor que se está usando y el interruptor DIP uno (1) de SW3 que corresponda al caballaje de la bomba que se está usando. Los valores del caballaje correspondiente están impresos arriba en los diagramas del SW2 y SW3 en el escudo negro. Seleccionar ninguno o más de un interruptor en SW2 o SW3 dará como resultado una falla del interruptor DIP indicada por F24 en la pantalla.

Sensibilidad de baja carga (si necesaria)

La sensibilidad de baja carga se DEBE ajustar solo cuando el SubDrive/MonoDrive está APAGADO. La nueva configuración no entrará en efecto hasta que el variador esté apagado.

El controlador SubDrive/MonoDrive está configurado de fábrica para asegurar la detección de fallas de baja carga en una amplia variedad de aplicaciones de bombeo. En casos poco comunes (como con ciertas bombas en pozos poco profundos) este nivel de activación puede dar como resultado fallas falsas. Si la bomba se instala en un pozo poco profundo, active el controlador y observe cómo funciona el sistema. Cuando el controlador comience a regular la presión, verifique el funcionamiento a varias velocidades de flujo para cerciorarse de que la sensibilidad predeterminada no ocasione fallas falsas por baja carga.

Si hace falta reducir la sensibilidad a la baja carga, corte la alimentación eléctrica y espere cinco minutos para que se descargue el controlador. Cuando se disipe el voltaje interno, ubique el potenciómetro de baja carga en la esquina superior derecha de la tarjeta de interfaz del usuario como se muestra en la siguiente figura.
SubDrive/MonoDrive

Sensibilidad a la baja carga: Configuración de baja profundidad
Si la bomba se instala en un pozo sumamente bajo (por ejemplo, un pozo artesiano) y el sistema se sigue disparando, entonces el potenciómetro de baja carga (Pot) debe regularse a un ajuste de menor sensibilidad, girándolo en sentido de las manecillas del reloj. Revise el nivel de disparo de baja carga y repita si es necesario.

Sensibilidad a la baja carga: Configuración de profundidad
En casos donde la bomba se instala a gran profundidad, ponga en marcha el sistema con la descarga abierta para achicar el pozo y observe cuidadosamente que una baja carga se detecte apropiadamente. Si el sistema no se activa correctamente, deberá ajustar el Pot de baja carga, girándolo en sentido de las manecillas del reloj a un valor de mayor sensibilidad.

Selección de flujo estable
El controlador SubDrive/MonoDrive viene con una configuración de fábrica que garantiza una respuesta rápida para mantener la presión constante. En casos especiales (como cuando hay un grifo antes del tanque de presión), puede ser necesario ajustar el controlador para que ofrezca un mejor control.

Si se utiliza el controlador en un sistema que tenga un grifo de agua antes del tanque de presión y cerca al cabezal del pozo, o donde se escuchan variaciones del PMA a través de los tubos, puede ser necesario ajustar el tiempo de respuesta del control de presión. Después de habilitar esta función, el instalador debe revisar los cambios de flujo y presión para verificar que no haya excesos. Un tanque de presión más grande y/o un margen mayor entre la presión de regulación y la válvula de alivio pueden ser necesarios a medida que la función de Flujo Estable reduce el tiempo de reacción del controlador a los cambios de flujo repentinos.

Si necesita ajustar el control de presión, desconecte la fuente de alimentación y deje que el controlador se descargue. Espere 5 minutos para que se disipe el voltaje interno, ubique el interruptor DIP marcado como “SW1”. Mueva DIP SW1 Posición 4 a la posición “ENCENDIDO” (arriba).
Configuración avanzada (wifi/aplicación móvil FE Connect)

Algunas características avanzadas pueden modificarse cuando se conecta el SubDrive/MonoDrive mediante wifi usando la aplicación móvil FE Connect. Siga las instrucciones abajo para conectar el variador y tener acceso a configuraciones y características avanzadas.

Conectar a wifi

1. El radio del wifi del variador solo puede conectarse dentro de quince (15) minutos después de encendido. Si el variador ha estado alimentado por más de quince (15) minutos, apague y encienda la unidad del SubDrive/MonoDrive.

2. Unos segundos después de la inicialización siguiente al encendido, FE Connect se iluminará con luz fija para indicar que hay una conexión disponible. La luz de FE Connect se localiza justo abajo de la ventana transparente de la pantalla.

3. Abra la configuración de la conexión de wifi en el dispositivo que desee usar para conectar el variador. Este método es similar al que se usa para conectarse a un punto de acceso normal para wifi. En la lista de conexiones disponibles de wifi localice el punto de acceso llamado “FECNCT_XXXXX”, donde “XXXXX” es la parte final del número de serie del variador que se está conectando.

4. Conectar al punto de acceso de wifi. La luz de FE Connect en el variador estará intermitente para indicar que se está haciendo una conexión. Solo un (1) dispositivo se puede conectar a un variador al mismo tiempo.

Nota: La conexión a wifi estará activa por una cantidad ilimitada de tiempo mientras el dispositivo móvil no se desconecte del wifi del variador. Si se interrumpe la conexión, el wifi del variador estará disponible para volverse a conectar durante una (1) hora después de la desconexión. Si desea volver a conectar el wifi del variador después de que haya transcurrido una hora, el variador debe volver a apagarse y encenderse.
Tener acceso al variador
Después de lograr una conexión exitosa con el variador, active la aplicación móvil FE Connect. La aplicación móvil FE Connect puede descargarse de la tienda de aplicaciones de Apple o de Google Play dependiendo del dispositivo que se esté usando.

Configuración
La pantalla de configuración permite la configuración de características adicionales del variador incluyendo:
• Salida del variador*
• Tamaño del motor*
• Tamaño de la bomba*
• Sensibilidad a la baja carga*
• Desactivación por baja carga
• Frecuencia mínima
• Frecuencia máxima
• Modo de choque
• Modo de tanque grande
• Modo agresivo
• Detección de tubería rota
• Flujo estable*
• Unidades (HP o kW)

* Para poder cambiar y usar las configuraciones de esta página para la salida del variador, el tamaño de la bomba, la sensibilidad de la baja carga y el flujo estable, el interruptor FE Connect DIP (SW1, Posición 1) en el variador debe estar en "ENCENDIDO". De lo contrario, el variador regresará a la configuración preestablecida del tamaño del motor, tamaño de la bomba y sensibilidad a la baja carga hecha mediante los interruptores DIP y la perilla giratoria de sensibilidad a la baja carga en el mismo variador.

Supervisión
Esta pantalla permite una supervisión del sistema en tiempo real incluyendo:
• Estado del sistema
• Voltaje de entrada
• Voltaje de salida
• Corriente de salida
• Velocidad del motor
• Información del sistema (modelo del variador, versión del hardware, versión del software)

Hojas de información
Esta pantalla permite ver y enviar por correo electrónico las hojas de información de fallas y cambios de configuración. Esta pantalla también muestra el tiempo total de activación y el tiempo de operación del motor.
<table>
<thead>
<tr>
<th>Accesorio</th>
<th>Detalle</th>
<th>Usar con</th>
<th>Número de pieza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juego de filtro de aire</td>
<td>Ayuda a evitar que los insectos entren y dañen los componentes internos del variador</td>
<td>Todos los modelos</td>
<td>226 550 901</td>
</tr>
<tr>
<td>Alternador doble</td>
<td>Permite que un sistema de agua alterne entre dos bombas paralelas controladas por SubDrives separados</td>
<td>Todos los modelos</td>
<td>585 001 2000</td>
</tr>
<tr>
<td>Filtro (entrada)</td>
<td>Filtro usado en el lado de entrada del variador para ayudar a eliminar la interferencia</td>
<td>Todos los modelos</td>
<td>225 198 901</td>
</tr>
<tr>
<td>Filtro (salida)</td>
<td>Filtro usado en el lado de salida del variador para ayudar a eliminar la interferencia</td>
<td>Todos los modelos (excluyendo SD300)</td>
<td>225 300 901</td>
</tr>
<tr>
<td>Filtro (condensadores de picos)</td>
<td>Condensador usado en el panel del servicio para ayudar a eliminar la interferencia de la alimentación eléctrica</td>
<td>SD15, SD20, SD30, MD, MDXT</td>
<td>225 199 901</td>
</tr>
<tr>
<td>Pararrayos</td>
<td>Monofásico (alimentación eléctrica de entrada)</td>
<td>Monofásico (alimentación eléctrica de entrada)</td>
<td>150 814 902</td>
</tr>
<tr>
<td>Juego de reemplazo del ventilador de NEMA 3R</td>
<td>Ventilador de repuesto</td>
<td>SD15 y MD</td>
<td>226 545 901</td>
</tr>
<tr>
<td>Juego de reemplazo del ventilador de NEMA 3R</td>
<td>Ventilador de repuesto</td>
<td>SD20, SD30, MDXT</td>
<td>226 545 902</td>
</tr>
<tr>
<td>Sensor de presión (alta: 75-150 psi, clasificado NSF 61)</td>
<td>Ajusta la presión en el sistema de agua de 75 a 150 psi (cable de 2 derivaciones)</td>
<td>Todos los modelos</td>
<td>225 970 901</td>
</tr>
<tr>
<td>Sensor de presión (Repuesto estándar: 25-80 psi, clasificado NSF 61)</td>
<td>Ajusta la presión en el sistema de agua de 25 a 80 psi (cable de 2 derivaciones)</td>
<td>Todos los modelos</td>
<td>223 995 901</td>
</tr>
<tr>
<td>Juego de cables del sensor (interior)</td>
<td>100 pies de cable AWG 22 (cable de 2 derivaciones)</td>
<td>SD15, SD20, SD30, MD y MDXT</td>
<td>223 995 902</td>
</tr>
<tr>
<td>Cable listo para enterrar del sensor</td>
<td>Diseñado para funcionar en una zanja subterránea sin el uso de tuberías que lo rodeen (cable de 4 derivaciones)</td>
<td>Todos los modelos - 10 pies (3 m)</td>
<td>225 800 901</td>
</tr>
<tr>
<td>Juego de aspiración del tanque</td>
<td>Permite el uso de agua almacenada en el tanque durante demandas de poco flujo</td>
<td>Todos los modelos - 30 pies (9 m)</td>
<td>225 800 902</td>
</tr>
<tr>
<td>Juego de aspiración del tanque</td>
<td>Permite el uso de agua almacenada en el tanque durante demandas de poco flujo</td>
<td>Todos los modelos - 100 pies (30.5 m)</td>
<td>225 800 903</td>
</tr>
<tr>
<td>Repuesto de la tarjeta de entrada del sensor de presión</td>
<td>Tarjeta de repuesto para variadores que han experimentado un pico en la entrada del sensor de presión</td>
<td>Todos los modelos</td>
<td>226 540 901</td>
</tr>
</tbody>
</table>
SOLUCIÓN DE PROBLEMAS

GUÍA DE REFERENCIA RÁPIDA

CÓDIGOS DE DIAGNÓSTICO DE FALLAS

<table>
<thead>
<tr>
<th>CANTIDAD DE DESTELLOS</th>
<th>FALLA</th>
<th>CAUSA POSIBLE</th>
<th>ACCIÓN CORRECTIVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1 BAJA CARGA DEL MOTOR</td>
<td>- Pozo que se ha bombeado demasiado</td>
<td>- Frecuencia cercana al máximo con menos de la sensibilidad a la baja carga configurada (potenciómetro o wifi)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Eje o acople averiado</td>
<td>- El sistema extrae agua hasta la entrada de la bomba (sin agua).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Bomba bloqueada por aire/gas</td>
<td>- Bomba con poca carga y estática alta; reiniciar el potenciómetro para menor sensibilidad, sino falta agua</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- SubDrive no está correctamente configurado para el extremo de la bomba</td>
<td>- Verificar la rotación de la bomba (SubDrive únicamente); si es necesario, reconectar para obtener una correcta rotación</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Sensibilidad a la baja carga configurada incorrectamente</td>
<td>- Bomba bloqueada por aire/gas: de ser posible, configurar mayor profundidad en el pozo para reducir</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Verificar la correcta configuración de los interruptores DIP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Verificar la configuración de la sensibilidad de baja carga (configuración del potenciómetro o wifi, el que corresponda)</td>
</tr>
<tr>
<td></td>
<td>F2 BAJO VOLTAJE</td>
<td>- Bajo voltaje de línea</td>
<td>- Voltaje bajo de línea, aproximadamente menos de 150 VCA (intervalo de funcionamiento normal = 190 a 260 VCA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Cables de entrada mal conectados</td>
<td>- Verificar conexiones eléctricas de entrada y corregir o ajustar si es necesario</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Conexión floja en el interruptor o en panel</td>
<td>- Corregir tensión de entrada; verificar el disyuntor o fusibles; póngase en contacto con la empresa eléctrica</td>
</tr>
<tr>
<td></td>
<td>F3 SOBRECORRIENTE/</td>
<td>- Desalineación de motor y/o bomba</td>
<td>- Amperaje por encima de SFL a 30 Hz.</td>
</tr>
<tr>
<td></td>
<td>BOMBA BLOQUEADA</td>
<td>- Arrastre de motor y/o bomba</td>
<td>- Quitar y reparar o reemplazar si fuera necesario</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Motor y/o bomba bloqueados</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Abrasivos en bomba</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Exceso en la longitud del cable del motor</td>
<td>- Reducir la longitud del cable del motor. Seguir la tabla de longitudes máximas para el motor.</td>
</tr>
<tr>
<td></td>
<td>F4 CABLEADO INCORRECTO</td>
<td>- MonoDrive únicamente</td>
<td>- Resistencia incorrecta en la prueba de CD en el arranque</td>
</tr>
<tr>
<td></td>
<td>(MonoDrive y MonoDriveXT</td>
<td>- Valores de resistencia incorrectos en los contactos principales de arranque</td>
<td>- Verificar el cableado, el tamaño del motor y la configuración del interruptor DIP; ajustar o reparar según sea necesario</td>
</tr>
<tr>
<td></td>
<td>únicamente)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F5 CIRCUITO ABIERTO</td>
<td>- Conexión floja</td>
<td>- Lectura abierta en la prueba de CD en el arranque.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Motor o cable de bajada defectuosos</td>
<td>- Verificar cable de bajada y resistencia del motor, ajustar conexiones de salida, reparar o reemplazar según sea necesario</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Motor incorrecto</td>
<td>- Utilizar motor "en seco" para verificar las funciones del variador. Si el variador no funciona y muestra falla de baja carga, reemplazar el variador</td>
</tr>
<tr>
<td></td>
<td>F6 CORTOCIRCUITO</td>
<td>- Cuando la falla se indica inmediatamente después de conectar la alimentación, el cortocircuito se deberá a una conexión floja, a un motor, empalme o cable defectuosos</td>
<td>- El amperaje superó 50 amperes en la prueba de CD en el arranque o el amperaje SF durante el funcionamiento</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Cableado de salida incorrecto, corto de fase a fase, corto de fase a tierra en cableado o motor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Si la falla está presente después de reiniciar y quitar los contactos del motor, reemplazar el variador</td>
</tr>
<tr>
<td></td>
<td>F7 VARIADOR SOBRECALENTADO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Alta temperatura ambiente</td>
<td>- El disipador térmico del variador ha excedido la temperatura máxima nominal; debe descender a menos de 194 °F (90 °C) para reiniciar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rayos solares directos</td>
<td>- Ventilador bloqueado o inoperable, temperatura ambiental por encima de 122 °F (50 °C), rayos solares directos, flujo de aire bloqueado</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Obstrucción en el flujo de aire</td>
<td>- Reemplazar el ventilador o reubicar el variador según sea necesario</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Quitar las basuras del ventilador de entrada/salida</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Quitar y limpiar el juego de filtros de aire opcionales (si están instalados)</td>
</tr>
<tr>
<td></td>
<td>F9 FALLA INTERNA EN LA PCB</td>
<td>- Se detectó una falla interna en el variador</td>
<td>- Póngase en contacto con el personal de servicio de Franklin Electric</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- La unidad puede requerir el reemplazo. Póngase en contacto con su proveedor.</td>
</tr>
<tr>
<td></td>
<td>F12 SOBREVOLTAJE</td>
<td>- Alto voltaje de línea</td>
<td>- Voltaje de línea alto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Voltaje interno demasiado alto</td>
<td>- Verificar conexiones eléctricas de entrada y corregir o ajustar si es necesario</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Si el voltaje de línea es estable y se mide por debajo de 260 VCA y el problema persiste, póngase en contacto con el personal de servicio de Franklin Electric</td>
</tr>
</tbody>
</table>

Apagar, desconectar los cables al motor y encender el SubDrive:
- Si el SubDrive no da una falla de “fase abierta” F5, entonces hay un problema con el SubDrive.
- Conecte el SubDrive a un motor seco. Si se le realiza a motor una prueba de CD y da la falla de “baja carga” (F1), el SubDrive está funcionando apropiadamente.
CÓDIGOS DE DIAGNÓSTICO DE FALLAS

<table>
<thead>
<tr>
<th>Código</th>
<th>Introducción</th>
<th>Causa Posible</th>
<th>Acción Correccional</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>CANTIDAD DE</td>
<td>Se detecta en el sistema una tubería rota o una fuga grande</td>
<td>Revise el sistema para detectar una fuga grande o una ruptura en la tubería</td>
</tr>
<tr>
<td>F2</td>
<td>TUBERÍA ROTA</td>
<td>El controlador opera a su máxima potencia durante 10 minutos sin llegar al punto de presión preestablecido</td>
<td>Si el sistema contiene un sistema de aspersión o se utiliza para llenar una alberca o cisterna, desconecte la detección de tubería rota</td>
</tr>
<tr>
<td>F3</td>
<td>FALTA A TIERRA</td>
<td>La corriente de la fase del motor difiere en 20% o más.</td>
<td>Verifique la resistencia del cable del motor y el devanado del motor.</td>
</tr>
<tr>
<td>F4</td>
<td>FALLA EN EL SENSOR DEL INVERSOR DE TEMPERATURA</td>
<td>El sensor de temperatura interna no está funcionando bien.</td>
<td>Póngase en contacto con el personal de servicio de Franklin Electric. Si persiste el problema, puede ser necesario que se reemplace la unidad. Póngase en contacto con su proveedor.</td>
</tr>
<tr>
<td>F5</td>
<td>FALLA DE COMUNICACIÓN</td>
<td>El cable de conexión entre la tarjeta de pantalla/wifi y la tarjeta de control principal está mal conectado o desconectado.</td>
<td>Revise el cable de conexión entre la tarjeta de pantalla/wifi y la tarjeta de control principal. Si persiste el problema, puede ser necesario que se reemplace la unidad. Póngase en contacto con su proveedor.</td>
</tr>
<tr>
<td>F6</td>
<td>FALLA EN EL ARRANQUE DE LA TARJETA PRINCIPAL</td>
<td>Se detectó una falla interna en el variador.</td>
<td>Póngase en contacto con el personal de servicio de Franklin Electric. La unidad puede requerir el reemplazo. Póngase en contacto con su proveedor.</td>
</tr>
<tr>
<td>F7</td>
<td>CONFIGURACIÓN DEL INTERRUPTOR DIP INVÁLIDA</td>
<td>No hay configuración del interruptor DIP o hay más de un interruptor DIP para el tamaño del motor.</td>
<td>Revise la configuración del interruptor DIP.</td>
</tr>
<tr>
<td>F8</td>
<td>FALTA EN EL SENSOR DE TEMPERATURA PFC</td>
<td>El sensor de temperatura interna no está funcionando bien.</td>
<td>Póngase en contacto con el personal de servicio de Franklin Electric. Si persiste el problema, puede ser necesario que se reemplace la unidad. Póngase en contacto con su proveedor.</td>
</tr>
</tbody>
</table>

SOLUCIÓN DE PROBLEMAS

- Apague, deje transcurrir el tiempo de refriego y encienda. Si el problema persiste, comuníquese con su proveedor.
- Compruebe que no se ha producido una sobrecarga en el motor. Si es así, comunique el problema a su proveedor.
RESOLUCIÓN DE PROBLEMAS PARA EL SUBDRIVE

<table>
<thead>
<tr>
<th>CONDICIÓN</th>
<th>LUCES INDICADORAS</th>
<th>CAUSA POSIBLE</th>
<th>ACCIÓN CORRECTIVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIN AGUA</td>
<td>NINGUNA</td>
<td>- Sin voltaje de alimentación</td>
<td>- Verifique la conexión del cable entre la tarjeta de control principal y la tarjeta de pantalla</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Cable de la tarjeta de la pantalla desconectado o flojo</td>
<td>- Si el voltaje correcto está presente, reemplace el variador</td>
</tr>
<tr>
<td></td>
<td>VERDE “---” EN LA PANTALLA</td>
<td>- Circuito del sensor de presión</td>
<td>- Verifique que la presión del agua se encuentre por debajo del punto de referencia del sistema</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Si se quita la pestaña de desacoplamiento de la tarjeta de presión de entrada, asegurar que el dispositivo auxiliar está conectado y el circuito está cerrado</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Si se quita la pestaña de desacoplamiento de la tarjeta de presión de entrada y no se está usando un dispositivo auxiliar, hacer un cortocircuito manual en las conexiones “AUX IN”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Cables de acoplamiento juntos en el sensor de presión; si la bomba arranca, reemplazar el sensor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Si la bomba no arranca, verificar la conexión del sensor de presión en la entrada, si está desconectado, reemplazar el cableado</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Si la bomba no arranca, verificar la conexión de la tarjeta de presión de entrada, si la bomba arranca, reemplazar la tarjeta de presión de entrada</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Si la bomba no arranca con la nueva tarjeta de presión de entrada, reemplazar el variador</td>
</tr>
<tr>
<td>ROJO</td>
<td>CÓDIGO DE FALLA EN LA PANTALLA</td>
<td>- Falla detectada</td>
<td>- Proceder a la descripción del código de falla y reparar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VERDE FRECUENCIA DEL MOTOR EN LA PANTALLA</td>
<td>- El variador y el motor están en operación</td>
<td>- Verificar la configuración para la frecuencia máxima. Si se redujo esta configuración por debajo del valor máximo, incrementar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Interruptor o conexión de cable flojo</td>
<td>- Verificar las calificaciones del motor y la bomba, igualarlas a las configuraciones del motor y la bomba en el variador (interruptor DIP o wifi)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Configuración del motor o la bomba incorrectos</td>
<td>- Verificar las conexiones del motor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- El motor puede estar funcionando en sentido opuesto</td>
<td>- Frecuencia máxima, amperes bajos, revisar si la válvula está cerrada o abierta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Consumo de agua en la entrada de la bomba</td>
<td>- Frecuencia máxima, amperes erráticos, revisar la operación de la bomba, arrastre de los impulsores</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Este no es un problema del variador</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Revisar todas las conexiones</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Desconectar la alimentación eléctrica y dejar que el pozo se recupere por un periodo corto de tiempo, volver a intentar</td>
</tr>
<tr>
<td>FLUCTUACIONES DE PRESIÓN (REGULACIÓN DEFICIENTE)</td>
<td>VERDE FRECUENCIA DEL MOTOR EN LA PANTALLA</td>
<td>- Colocación y configuración del sensor de presión</td>
<td>- Presión correcta y colocación si se necesita</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Colocación del manómetro</td>
<td>- El tanque puede ser muy pequeño para el flujo del sistema</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Tamaño del tanque de presión y precarga</td>
<td>- Este no es un problema del variador</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Arrastre de aire a la entrada de la bomba (falta de sumersión)</td>
<td>- Desconectar la alimentación eléctrica y verificar el manómetro por caída de presión</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Configurar mayor profundidad en el pozo o tanque; instalar un manguito de flujo sellado herméticamente alrededor del tubo y cable de bajada</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Si la fluctuación se presenta solamente en derivaciones antes del sensor, activar flujo continuo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Cambie el tamaño del tanque</td>
</tr>
<tr>
<td>Condición</td>
<td>Luz de FE Connect</td>
<td>Acción Correctiva</td>
<td>Causa Posible</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>SIN LUCES</td>
<td>VERDE</td>
<td></td>
<td>- Compruebe la conexión del cable de la tarjeta de pantalla a la tarjeta principal.</td>
</tr>
<tr>
<td>WiFi NO PUEDE CONECTAR AL VARIADOR</td>
<td>VERDE</td>
<td></td>
<td>- Verifique la conexión de la tarjeta de la pantalla al variador.</td>
</tr>
<tr>
<td>INTERFERENCIA RFI-EMI</td>
<td>VERDE</td>
<td></td>
<td>- Compruebe el cable de tierra y el tendido de cables.</td>
</tr>
<tr>
<td>SIN LUCES</td>
<td>NINGUNA</td>
<td></td>
<td>- Verifique la conexión del cable de la tarjeta de pantalla a la tarjeta principal.</td>
</tr>
<tr>
<td>BAJA PRESIÓN</td>
<td>VERDE</td>
<td></td>
<td>- Verifique la condición del cable de tierra y el tendido de cables.</td>
</tr>
<tr>
<td>ALTA PRESIÓN</td>
<td>VERDE</td>
<td></td>
<td>- Verifique la condición del cable de tierra y el tendido de cables.</td>
</tr>
<tr>
<td>RUIDO AUDIBLE</td>
<td>VERDE</td>
<td></td>
<td>- Verifique la condición del cable de tierra y el tendido de cables.</td>
</tr>
<tr>
<td>WIFI NO PUEDE CONECTAR AL VARIADOR</td>
<td>VERDE</td>
<td></td>
<td>- Verifique la conexión de la tarjeta de la pantalla al variador.</td>
</tr>
<tr>
<td>SIN LUCES</td>
<td>NINGUNA</td>
<td></td>
<td>- Verifique la conexión del cable de la tarjeta de pantalla a la tarjeta principal.</td>
</tr>
<tr>
<td>BAJA PRESIÓN</td>
<td>VERDE</td>
<td></td>
<td>- Verifique la condición del cable de tierra y el tendido de cables.</td>
</tr>
<tr>
<td>ALTA PRESIÓN</td>
<td>VERDE</td>
<td></td>
<td>- Verifique la condición del cable de tierra y el tendido de cables.</td>
</tr>
<tr>
<td>RUIDO AUDIBLE</td>
<td>VERDE</td>
<td></td>
<td>- Verifique la condición del cable de tierra y el tendido de cables.</td>
</tr>
<tr>
<td>WIFI NO PUEDE CONECTAR AL VARIADOR</td>
<td>VERDE</td>
<td></td>
<td>- Verifique la conexión de la tarjeta de la pantalla al variador.</td>
</tr>
<tr>
<td>SIN LUCES</td>
<td>NINGUNA</td>
<td></td>
<td>- Verifique la conexión del cable de la tarjeta de pantalla a la tarjeta principal.</td>
</tr>
<tr>
<td>BAJA PRESIÓN</td>
<td>VERDE</td>
<td></td>
<td>- Verifique la condición del cable de tierra y el tendido de cables.</td>
</tr>
<tr>
<td>ALTA PRESIÓN</td>
<td>VERDE</td>
<td></td>
<td>- Verifique la condición del cable de tierra y el tendido de cables.</td>
</tr>
<tr>
<td>RUIDO AUDIBLE</td>
<td>VERDE</td>
<td></td>
<td>- Verifique la condición del cable de tierra y el tendido de cables.</td>
</tr>
<tr>
<td>WIFI NO PUEDE CONECTAR AL VARIADOR</td>
<td>VERDE</td>
<td></td>
<td>- Verifique la conexión de la tarjeta de la pantalla al variador.</td>
</tr>
<tr>
<td>SIN LUCES</td>
<td>NINGUNA</td>
<td></td>
<td>- Verifique la conexión del cable de la tarjeta de pantalla a la tarjeta principal.</td>
</tr>
<tr>
<td>BAJA PRESIÓN</td>
<td>VERDE</td>
<td></td>
<td>- Verifique la condición del cable de tierra y el tendido de cables.</td>
</tr>
<tr>
<td>ALTA PRESIÓN</td>
<td>VERDE</td>
<td></td>
<td>- Verifique la condición del cable de tierra y el tendido de cables.</td>
</tr>
<tr>
<td>RUIDO AUDIBLE</td>
<td>VERDE</td>
<td></td>
<td>- Verifique la condición del cable de tierra y el tendido de cables.</td>
</tr>
</tbody>
</table>
EL PRODUCTO DEFECTUOSO.
Franklin Electric Company, Inc. y sus filiales (de aquí en adelante, “la Empresa”) garanticen que los productos que cubre esta garantía carecen de defectos en cuanto al material o la mano de obra de la Empresa.

La Empresa tiene derecho a inspeccionar todo producto devuelto en garantía para confirmar si tiene defectos en el material o la mano de obra. El comprador tendrá el derecho exclusivo de elegir si reparará o reemplazará el equipo, las piezas o los componentes defectuosos.

El comprador deberá enviar el producto a un distribuidor autorizado de Franklin Electric para hacer uso de la garantía. Las devoluciones al lugar de compra solo se considerarán para la cobertura de la garantía si el lugar de compra es un Distribuidor de Franklin Electric al momento en el que se haga la reclamación. Con sujeción a los términos y las condiciones que se enumeran a continuación, la Empresa le reparará o reemplazará al comprador cualquier parte de este producto que se compruebe estar defectuoso a causa de los materiales o la mano de obra de la Empresa.

La Empresa considerará que los productos están garantizados durante doce meses a partir de la fecha de su instalación, o durante 24 meses a partir de la fecha de manufactura, lo que ocurra primero.

La Empresa no se responsabilizará EN NINGÚN CASO ni estará obligada a responder por el costo del trabajo de campo u otros cargos en los que incurra un cliente al retirar y/o instalar un producto, una pieza o un componente de este.

La Empresa se reserva el derecho de cambiar o mejorar sus productos, o cualquier parte de ellos, sin tener la obligación de proveer dicho cambio o mejora a los productos que se han vendido con anterioridad.

ESTA GARANTÍA NO SE APLICA a los productos dañados por sucesos de fuerza mayor, incluyendo descargas eléctricas, el desgaste normal del producto, los servicios habituales de mantenimiento y las piezas que se utilicen en relación con dichos servicios, o por cualquier otra condición que escape al control de la Empresa.

ESTA GARANTÍA SE ANULARÁ DE INMEDIATO si se presenta cualquiera de las siguientes condiciones:

1. El producto se utilizó para otros propósitos distintos a aquellos para los que fue diseñado y fabricado;
2. El producto no se instala de conformidad con los códigos, los reglamentos y las buenas prácticas comerciales vigentes;
3. El producto no fue instalado por un contratista certificado por Franklin; o
4. El producto resultó dañado por negligencia, abuso, accidente, aplicación indebida, modificación, alteración, instalación, operación, mantenimiento o almacenamiento inadecuados o como resultado del uso de los límites recomendados y establecidos en las instrucciones del producto.

NI EL VENDEDOR NI LA COMPAÑÍA SERÁN RESPONSABLES POR NINGUNA LESIÓN, PéRDIDA O DAÑO DIRECTO, INCIDENTAL O CONSECUENCIAL (INCLUIDOS, A TÍTULO ENUNCIATIVO, LOS DAÑOS INCIDENTALES Y CONSECUENCIALES POR PÉRDIDA DE GANANCIAS, VENTAS NO REALIZADAS, LESIONES A PERSONAS O LA PROPIEDAD, O CUALQUIER OTRA PÉRDIDA INCIDENTAL O CONSECUENCIAL) QUE SURJAN DEL USO O DE LA IMPOSIBILIDAD DEL USO DEL PRODUCTO, Y EL COMPRADOR ACEPTA QUE NO TENDRÁ DISPONIBLE NINGUNA OTRA COMPENSACIÓN.

LA GARANTÍA Y COMPENSACIONES DESCRIPTAS EN ESTA GARANTÍA LIMITADA SON EXCLUSIVOS Y REEMPLAZAN A CUALQUIER OTRA GARANTÍA O COMPENSACIÓN, EXPRESAS O IMPLÍCITAS, Y POR EL PRESENTE SE EXCLUEN OTRAS GARANTÍAS Y COMPENSACIONES INCLUYENDO, A TÍTULO ENUNCIATIVO, MAS NO LIMITATIVO, TODO GARANTÍA IMPLÍCITA DE COMERCIABILIDAD O IDONEIDAD PARA UN PROPÓSITO DETERMINADO, Y EN LA MEDIDA EN QUE ALGUNA DE LAS DOS SEA APLICABLE A UN PRODUCTO, ESTARÁ LIMITADA A LA DURACIÓN DE LOS PERIODOS DE LAS GARANTÍAS EXPRESAS MENCIONADAS ANTERIORMENTE.

DESCARGO DE RESPONSABILIDADES Cualquier declaración oral sobre el producto realizada por el vendedor, la Empresa, los representantes o cualquier otra parte, no constituye garantías. El usuario no debe depender de ellas, y no forman parte de este contrato de venta. La única obligación del vendedor y la Empresa, y la única compensación a disposición del comprador, será el reemplazo y/o la reparación del producto por parte de la Empresa, de la forma descrita anteriormente. Antes de usar el producto, el usuario determinará la idoneidad de este para su uso previsto, y el usuario asumirá todos los riesgos y la responsabilidad que se deriven de esta acción.

Algunos estados y países no permiten la exclusión o la limitación respecto a la duración de una garantía implícita, ni tampoco la exclusión o la limitación respecto a los daños incidentales o consecuenciales, de manera que es posible que la exclusión o las limitaciones mencionadas anteriormente, no sean aplicables en su caso. Esta garantía le concede derechos legales específicos, y también puede tener otros derechos que varián según el estado y el país.

Franklin Electric, a su exclusivo criterio, puede actualizar esta garantía limitada ocasionalmente. Cualquier información conflictiva en relación a los procedimientos de la garantía, ya sea en un manual del usuario o no, queda suplantada por este documento. No obstante, todas las referencias al período o longitud del periodo de una garantía, permanecerán consistentes con la garantía vigente al momento de compra.

El comprador puede hacer válida la garantía directamente con el representante donde fue adquirido el producto. Para compras en México, puede contactar al importador Motores Franklin S.A. de C.V. En cualquier caso, deberá presentar el producto acompañado de la factura de compra o la presente póliza de garantía.

Para poder acceder a componentes, consumibles y accesorios, el usuario puede adquirir directamente con el representante donde fue adquirido el producto. Para compras en México, puede contactar al importador Motores Franklin S.A. de C.V.

Importador: Motores Franklin S.A. de C.V.
Av. Churubusco 1600 B16
Monterrey, NL
CP 64560 MÉXICO
Tel. 81 8000 1000
NOTAS:
NOTAS:
WARNING

Serious or fatal electrical shock may result from failure to connect the ground terminal to the motor, SubDrive/MonoDrive controller, metal plumbing, or other metal near the motor or cable, using wire no smaller than motor cable wires. To minimize risk of electrical shock, disconnect power before working on or around the SubDrive/MonoDrive system. CAPACITORS INSIDE THE SUBDRIVE/MONODRIVE CONTROLLER CAN STILL HOLD LETHAL VOLTAGE EVEN AFTER POWER HAS BEEN DISCONNECTED.

ALLOW 5 MINUTES FOR DANGEROUS INTERNAL VOLTAGE TO DISCHARGE BEFORE REMOVING SUBDRIVE/MONODRIVE COVER.

Do not use motor in swimming areas.

ATTENTION

This equipment should be installed by technically qualified personnel. Failure to install it in compliance with national and local electrical codes and within Franklin Electric recommendations may result in electrical shock or fire hazard, unsatisfactory performance, or equipment failure. Installation information is available through pump manufacturers and distributors, or directly from Franklin Electric at our toll-free number 1-800-348-2420.

CAUTION

Use SubDrive/MonoDrive only with Franklin Electric 4-inch submersible motors as specified in this manual (see Table 2, pg. 19). Use of this unit with any other Franklin Electric motor or with motors from other manufacturers may result in damage to both motor and electronics. In applications where water delivery is critical, a replacement pressure sensor and/or back-up system should be readily available if the drive fails to operate as intended.